June 24, 2004
Similar papers 5
February 2, 2021
We show that point defects in two-dimensional photonic crystals can support bound states in the continuum (BICs). The mechanism of confinement is a symmetry mismatch between the defect mode and the Bloch modes of the photonic crystal. These BICs occur in the absence of bandgaps and therefore provide an alternative mechanism to confine light. Furthermore, we show that such BICs can propagate in a fiber geometry and exhibit arbitrarily small group velocity which could serve as ...
November 25, 2011
We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromagnetic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion relation is properly compensated for. This approach allows to combine slow light regime together with self-collimation in photonic crystal superlattices presenting an e...
September 27, 2016
One-dimensional (1D) infinite periodic systems exhibit vanishing group velocity and diverging density of states (DOS) near band edges. However, in practice, systems have finite sizes and inevitably this prompts the question of whether helpful physical quantities related to infinite systems, such as the group velocity that is deduced from the band structure, remain relevant in finite systems. For instance, one may wonder how the DOS divergence can be approached with finite sys...
August 21, 2015
The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow-light and random disorder due to unavoidable fabrication imperfect...
April 25, 2008
We analyze the resonant transmission of light through a photonic-crystal waveguide side coupled to a Kerr nonlinear cavity, and demonstrate how to design the structure geometry for achieving bistability and all-optical switching at ultra-low powers in the slow-light regime. We show that the resonance quality factor in such structures scales inversely proportional to the group velocity of light at the resonant frequency and thus grows indefinitely in the slow-light regime. Acc...
November 29, 2010
Periodically structured materials can sustain both optical and mechanical modes. Here we investigate and observe experimentally the optomechanical properties of a conventional two-dimensional suspended photonic crystal defect cavity with a mode volume of $\sim$$3(\lambda/n)^{3}$. Two families of mechanical modes are observed: flexural modes, associated to the motion of the whole suspended membrane, and localized modes with frequencies in the GHz regime corresponding to locali...
January 18, 2016
Photonic crystal waveguides are known to support C-points - point-like polarisation singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find tha...
April 15, 2009
We present the first observations of zero-n bandgaps in photonic crystal superlattices consisting of alternating stacks of negative index photonic crystals and positive index dielectric materials in the near-infrared. Guided by ab initio three-dimensional numerical simulations, the fabricated nanostructured superlattices demonstrate the presence of zero-order gaps in remarkable agreement with theoretical predictions across a range of different superlattice periods and unit ce...
October 19, 2007
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matt...
April 10, 2015
Arrays of photonic cavities are relevant structures for developing large-scale photonic integrated circuits and for investigating basic quantum electrodynamics phenomena, due to the photon hopping between interacting nanoresonators. Here, we investigate, by means of scanning near-field spectroscopy, numerical calculations and an analytical model, the role of different neighboring interactions that give rise to delocalized supermodes in different photonic crystal array configu...