August 3, 2004
Similar papers 2
April 20, 2000
Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light ...
August 25, 2004
A novel atomic beam splitter, using reflection of atoms off an evanescent light wave, is investigated theoretically. The intensity or frequency of the light is modulated in order to create sidebands on the reflected de Broglie wave. The weights and phases of the various sidebands are calculated using three different approaches: the Born approximation, a semiclassical path integral approach, and a numerical solution of the time-dependent Schr\"odinger equation. We show how thi...
December 21, 2000
We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element...
November 23, 2008
We demonstrate an atomic interferometer based on ultra-cold atoms released from an optical lattice. This technique yields a large improvement in signal to noise over a related interferometer previously demonstrated. The interferometer involves diffraction of the atoms using a pulsed optical lattice. For short pulses a simple analytical theory predicts the expected signal. We investigate the interferometer for both short pulses and longer pulses where the analytical theory bre...
May 3, 2021
The far-field patterns of atoms diffracted from a classical light field, or from a quantum one in a photon-number state are identical. On the other hand, diffraction from a field in a coherent state, which shares many properties with classical light, displays a completely different behavior. We show that in contrast to the diffraction patterns, the interference signal of an atom interferometer with light-pulse beam splitters and mirrors in intense coherent states does approac...
October 30, 2014
We experimentally and theoretically study the diffraction phase of large-momentum transfer beam splitters in atom interferometers based on Bragg diffraction. We null the diffraction phase and increase the sensitivity of the interferometer by combining Bragg diffraction with Bloch oscillations. We demonstrate agreement between experiment and theory, and a 1500-fold reduction of the diffraction phase, limited by measurement noise. In addition to reduced systematic effects, our ...
April 1, 2003
We describe the fabrication of an atom mirror by etching of a common hard drive, and we report the observation of specular retroreflection of 11 uk cesium atoms using this mirror. The atoms were trapped and cooled above the hard drive using the mirror magneto-optical trap technique, and upon release, two full bounces were detected. The hard drive atom mirror will be a useful tool for both atom optics and quantum computation.
February 7, 2019
Matter-wave interferometry and spectroscopy of optomechanical resonators offer complementary advantages. Interferometry with cold atoms is employed for accurate and long-term stable measurements, yet it is challenged by its dynamic range and cyclic acquisition. Spectroscopy of optomechanical resonators features continuous signals with large dynamic range, however it is generally subject to drifts. In this work, we combine the advantages of both devices. Measuring the motion o...
October 13, 2011
We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these mo...
August 27, 2019
We demonstrate laser interferometry based on phase difference between the two arms of the interferometer. The experiments are done with a Cs atomic vapor cell at room temperature and use atomic coherence. The interference can be tuned from constructive to destructive by tuning the relative phase between the two arms. It is similar to the Michelson interferometer, but differs in the important aspect of allowing interference when the polarizations in the two arms are orthogonal...