August 24, 2004
A procedure to calculate the radiation spectrum emitted by an arbitrarily prepared Dirac wave packet is developed. It is based on the Dirac charge current and classical electrodynamic theory. Apart from giving absolute intensity values, it is exact in terms of relativistic retardation effects and angular dependence. We employ a laser driven free electron to demonstrate the advantages of our method as compared to traditional ones that merely rely on the Fourier transform of the dipole operator's expectation value. Classical reference calculations confirm the results obtained for the low-frequency part of the spectrum, especially in terms of the observed red-shifts, which clearly deviate from non-relativistic calculations. In the high-frequency part of the spectrum, we note appreciable deviations to the purely classical calculations which may be linked to quantum averaging effects.
Similar papers 1
September 23, 2024
An exact solution of the Dirac equation in the presence of an arbitrary electromagnetic plane wave is found, which corresponds to a focused electron wave packet, with the focus of the wave packet moving at the speed of light in the opposite direction of the average momentum of the electron wave packet (unless the plane wave is so intense to reflect the electron). The photon spectrum emitted by such an electron wave packet in the presence of a linearly-polarized plane wave is ...
May 21, 2010
The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly p...
September 10, 2002
Classical electromagnetic radiation from quantum currents and densities are calculated. For the free Schrodinger equation with no external force it's found that the classical radiation is zero to all orders of the multipole expansion. This is true of mixed or pure states for the charged particle. It is a non-trivial and surprising result. A similar result is found for the Klein-Gordon currents when the wave function consists of only positive energy solutions. For the Dirac eq...
October 13, 2023
A solution of the Dirac equation in a strong laser field presenting a nonspreading wave packet in the rest frame of the electron is derived. It consists of a generalization of the self-accelerating free electron wave packet [Kaminer et al. Nature Phys. 11, 261 (2015)] to the case with the background of a strong laser field. Built upon the notion of nonspreading for an extended relativistic wavepacket, the concept of Born rigidity for accelerated motion in relativity is the ke...
October 22, 2009
The emission from an electron in the field of a relativistically strong laser pulse is analyzed. At the pulse intensities of \ge 10^{22} W/cm^2 the emission from counter-propagating electrons is modified by the effects of Quantum ElectroDynamics (QED), as long as the electron energy is sufficiently high: E \ge 1 GeV. The radiation force experienced by an electron is for the first time derived from the QED principles and its applicability range is extended towards the QED-stro...
January 20, 2010
The electromagnetic radiation emitted by an ultra-relativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense ($I>10^{20}\;\text{W/cm$^2$}$), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly th...
November 8, 2016
Starting from the Dirac equation coupled to a classical radiation field a set of equations of motion for charged quasi-particles in the classical limit for slowly varying radiation and matter fields is derived. The radiation reaction term derived in the paper is the Abraham-Lorentz-Dirac term.
January 13, 2014
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the...
December 3, 2007
The radiation emitted by a single-electron wave packet in an intense laser field is considered. A relation between the exact quantum formulation and its classical counterpart is established via the electron's Wigner function. In particular we show that the wave packet, even when it spreads to the scale of the wavelength of the driving laser field, cannot be treated as an extended classical charge distribution but rather behaves as a point-like emitter carrying information on ...
October 22, 2011
Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrar...