March 18, 2005
Similar papers 3
December 6, 2018
In this paper, a fractional step lattice Boltzmann method is proposed to model two-phase flows with large density differences by solving Cahn-Hilliard phase-field equation and the incompressible Navier-Stokes equations.In order to maintain a hyperbolic tangent property of the interface profile and conserve the volume, an interfacial profile correction term and a flux correction term are added into the original Cahn-Hilliard equation respectively. By using a fractional step sc...
November 29, 2012
Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time...
June 27, 2013
In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multi-range potential was devised to adjust the surface tension [Sbragaglia et al., Phys. Rev. E 75, 026702 (2007)]. However, it was ...
July 23, 2002
Stationary droplets simulated by multi-phase lattice Boltzmann methods lead to spurious velocities around them. In this article I report the origin of these spurious velocities for one example and show how they can be avoided.
August 5, 2015
Over the past few decades, tremendous progress has been made in the development of particle-based discrete simulation methods versus the conventional continuum-based methods. In particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, versatile and powerful computational methodology for both fundamental research and engineering applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, whi...
June 20, 2023
This paper proposes a simple and accurate lattice Boltzmann model for simulating thermocapillary flows, which is able to deal with thermophysical parameters contrasts. In this model, two lattice Boltzmann equations are utilized to solve the conservative Allen-Cahn equation and the incompressible Navier-Stokes equations, while another lattice Boltzmann equation is used for solving the temperature field, where the collision term is delicately designed such that the influence of...
March 1, 2010
This paper proposes an improved lattice Boltzmann scheme for incompressible axisymmetric flows. The scheme has the following features. First, it is still within the framework of the standard lattice Boltzmann method using the single-particle density distribution function and consistent with the philosophy of the lattice Boltzmann method. Second, the source term of the scheme is simple and contains no velocity gradient terms. Owing to this feature, the scheme is easy to implem...
October 26, 2017
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A novel forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much si...
July 17, 2024
We propose an innovative difference-free scheme that combines the one-fluid lattice Boltzmann method (lBM) with the conservative phase-field (CPF) lBM to effectively solve large-scale two-phase fluid flow problems. The difference-free scheme enables the derivation of the derivative of the order parameter and the normal vector through the moments of the particle distribution function (PDF). We further incorporate the surface tension force in a continuous surface stress form in...
July 27, 2015
In this paper, an efficient three-dimensional lattice Boltzmann (LB) model with multiple-relaxation-time (MRT) collision operator is developed for the simulation of multiphase flows. This model is an extension of our previous two-dimensional model (H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phys. Rev. E. 89, 053320 (2014)) to the three dimensions using the D3Q7 (seven discrete velocities in three dimensions) lattice for the Chan-Hilliard equation (CHE) and the D3Q15 latt...