July 30, 2006
Similar papers 4
August 14, 2018
Semiconductor nanowires (NWs) are promising for realizing various on-chip nonlinear optical devices, due to their nanoscale lateral confinement and strong light-matter interaction. However, high-intensity pulsed pump lasers are typically needed to exploit their optical nonlinearity because light couples poorly with nanometric-size wires. Here, we demonstrate microwatts continuous-wave light pumped second harmonic generation (SHG) in AlGaAs NWs by integrating them with silicon...
February 21, 2013
The generalization of quasi-phase-matching using polarization beating and of multimode quasi-phase-matching (MMQPM) for the generation of high-order harmonics is explored, and a method for achieving polarization beating is proposed. If two (and in principle more) modes of a waveguide are excited, modulation of the intensity, phase, and/or polarization of the guided radiation will be achieved. By appropriately matching the period of this modulation to the coherence length, qua...
October 13, 2016
Integrated thin-film lithium niobate platform has recently emerged as a promising candidate for next-generation, high-efficiency wavelength conversion systems that allow dense packaging and mass-production. Here we demonstrate efficient, phase-matched second harmonic generation in lithographically-defined thin-film lithium niobate waveguides with sub-micron dimensions. Both modal phase matching in fixed-width waveguides and quasi-phase matching in periodically grooved wavegui...
September 18, 2018
Quadratic optical parametric processes form the foundation for a variety of applications related to classical and quantum frequency conversion, which have attracted significant interest recently in on-chip implementation. These processes rely on phase matching among the interacting guided modes, and refractive index engineering has been a primary approach for this purpose. Unfortunately, the modal phase matching approaches developed so far only produce parametric generation w...
July 13, 2016
Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten diselenide using a silicon photonic crystal cavity. By pumping the device with the ultrafast laser pulses near the cavity mode at the telecommunication wavelength, we observe a near visible SHG with a narrow linewidth and near unity ...
June 5, 2007
A novel concept of self-phasematched optical frequency conversion in dispersive dielectric microcavities is studied theoretically and experimentally. We develop a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes and translating the phasematching requirement into the optimization of a nonlinear cavity mode overlap. We design and fabricate integrated double-resonance semiconductor microcavities for self-phasematched second harmon...
April 26, 2023
We report a systematic investigation into the processes behind a near hundredfold enhanced second harmonic wave generated from a laser-induced air plasma, by examining the temporal dynamics of the frequency conversion processes, and the polarization of the emitted second harmonic beam. Contrary to typical nonlinear optical processes, the enhanced second harmonic generation efficiency is only observed within a sub-picosecond time window and found to be nearly constant across f...
June 30, 2023
Second-harmonic generation allows for coherently bridging distant regions of the optical spectrum, with applications ranging from laser technology to self-referencing of frequency combs. However, accessing the nonlinear response of a medium typically requires high-power bulk sources, specific nonlinear crystals, and complex optical setups, hindering the path toward large-scale integration. Here we address all of these issues by engineering a chip-scale second-harmonic (SH) so...
January 11, 2017
Integrated waveguides exhibiting efficient second-order nonlinearities are crucial to obtain compact and low power optical signal processing devices. Silicon nitride (SiN) has shown second harmonic generation (SHG) capabilities in resonant structures and single-pass devices leveraging intermodal phase matching, which is defined by waveguide design. Lithium niobate allows compensating for the phase mismatch using periodically poled waveguides, however the latter are not reconf...
September 3, 2003
We propose novel multi-phase-matched process that starts with generation of a pair of symmetric second-harmonic waves. Each of them interacts again with the fundamental wave to produce two constructively interfering third harmonic waves collinear to the fundamental input wave.