February 28, 2014
The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which ...
August 18, 2003
Using each node's degree as a proxy for its importance, the topological hierarchy of a complex network is introduced and quantified. We propose a simple dynamical process used to construct networks which are either maximally or minimally hierarchical. Comparison with these extremal cases as well as with random scale-free networks allows us to better understand hierarchical versus modular features in several real-life complex networks. For random scale-free topologies the exte...
June 9, 2002
Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that these two features are the consequence of a hierarchical organization, implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while maintaining a scale-free topology. In hierarchical networks the degree of clustering characterizing the different groups follows a strict scaling law, ...
December 15, 2017
Our recent paper [Grauwin et al. Sci. Rep. 7 (2017)] demonstrates that community and hierarchical structure of the networks of human interactions largely determines the least and should be taken into account while modeling them. In the present proof-of-concept pre-print the opposite question is considered: could the hierarchical structure itself be inferred to be best aligned with the network model? The inference mechanism is provided for both - spatial networks as well as co...
January 22, 2022
Graph representation learning has demonstrated improved performance in tasks such as link prediction and node classification across a range of domains. Research has shown that many natural graphs can be organized in hierarchical communities, leading to approaches that use these communities to improve the quality of node representations. However, these approaches do not take advantage of the learned representations to also improve the quality of the discovered communities and ...
April 18, 2011
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasona...
January 26, 2023
Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. In this work we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our mod...
June 5, 2020
Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defin...
June 3, 2009
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, p...
August 9, 2004
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(m d log n) where d is the depth of t...