March 6, 2023
In real world domains, most graphs naturally exhibit a hierarchical structure. However, data-driven graph generation is yet to effectively capture such structures. To address this, we propose a novel approach that recursively generates community structures at multiple resolutions, with the generated structures conforming to training data distribution at each level of the hierarchy. The graphs generation is designed as a sequence of coarse-to-fine generative models allowing fo...
November 18, 2024
We propose a novel dynamic network model to capture evolving latent communities within temporal networks. To achieve this, we decompose each observed dynamic edge between vertices using a Poisson-gamma edge partition model, assigning each vertex to one or more latent communities through \emph{nonnegative} vertex-community memberships. Specifically, hierarchical transition kernels are employed to model the interactions between these latent communities in the observed temporal ...
June 9, 2002
Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that these two features are the consequence of a hierarchical organization, implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while maintaining a scale-free topology. In hierarchical networks the degree of clustering characterizing the different groups follows a strict scaling law, ...
February 28, 2014
The investigation of community structure in networks is a task of great importance in many disciplines, namely physics, sociology, biology and computer science where systems are often represented as graphs. One of the challenges is to find local communities from a local viewpoint in a graph without global information in order to reproduce the subjective hierarchical vision for each vertex. In this paper we present the improvement of an information dynamics algorithm in which ...
December 15, 2017
Our recent paper [Grauwin et al. Sci. Rep. 7 (2017)] demonstrates that community and hierarchical structure of the networks of human interactions largely determines the least and should be taken into account while modeling them. In the present proof-of-concept pre-print the opposite question is considered: could the hierarchical structure itself be inferred to be best aligned with the network model? The inference mechanism is provided for both - spatial networks as well as co...
August 18, 2003
Using each node's degree as a proxy for its importance, the topological hierarchy of a complex network is introduced and quantified. We propose a simple dynamical process used to construct networks which are either maximally or minimally hierarchical. Comparison with these extremal cases as well as with random scale-free networks allows us to better understand hierarchical versus modular features in several real-life complex networks. For random scale-free topologies the exte...
January 22, 2022
Graph representation learning has demonstrated improved performance in tasks such as link prediction and node classification across a range of domains. Research has shown that many natural graphs can be organized in hierarchical communities, leading to approaches that use these communities to improve the quality of node representations. However, these approaches do not take advantage of the learned representations to also improve the quality of the discovered communities and ...
April 18, 2011
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasona...
June 5, 2020
Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defin...
January 26, 2023
Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. In this work we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our mod...