August 25, 1997
Similar papers 4
November 18, 2002
We propose that local Lorentz invariance is spontaneously violated at high energies, due to a nonvanishing vacuum expectation value of a vector field \phi^\mu, as a possible explanation of the observation of ultra-high energy cosmic rays with an energy above the GZK cutoff. Certain consequences of spontaneous breaking of Lorentz invariance in cosmology are discussed.
July 25, 2016
This contribution to the CPT'16 meeting provides a brief overview of recent studies of nonminimal Lorentz violation in the Standard-Model Extension.
July 30, 2004
This article reviews many of the observational constraints on Lorentz symmetry violation (LV). We first describe the GZK cutoff and other phenomena that are sensitive to LV. After a brief historical sketch of research on LV, we discuss the effective field theory description of LV and related questions of principle, technical results, and observational constraints. We focus on constraints from high energy astrophysics on mass dimension five operators that contribute to LV elec...
October 9, 2011
The new results by OPERA collaboration claim the discovery of superluminal neutrinos. Superluminal particles have to break Lorentzian symmetry or causality principle. The method discussed gives us the possibility to reintroduce Lorentzian symmetry without breaking of causality.
December 18, 2006
We review the basics of the two most widely used approaches to Lorentz violation - the Stardard Model Extension and Noncommutative Field Theory - and discuss in some detail the example of the modified spectrum of the synchrotron radiation. Motivated by touching upon such a fundamental issue as Lorentz symmetry, we ask three questions: What is behind the search for Lorentz violation? Is String Theory a physical theory? Is there an alternative to Supersymmetry?
August 30, 2005
We analyze the phenomenological consequences of a Lorentz violating energy-momentum dispersion relation in order to give a simple explanation for the baryon asymmetry in the Universe. By assuming very few hypotheses, we propose a straightforward mechanism for generating the observed matter-antimatter asymmetry which entails a Lorentz-breakdown energy scale of the order of the Greisen-Zatsepin-Kuzmin cut-off.
February 19, 2006
The violation of spacetime symmetries provides a promising candidate signal for underlying physics, possibly arising at the Planck scale. This talk gives an overview over various aspects in the field, including some mechanisms for Lorentz breakdown, the SME test framework, and phenomenological signatures for such effects.
March 27, 2000
An updated discussion of Lorentz symmetry violation in particle physics at very high energy is presented, focusing on applications of models of deformed Lorentz symmetry to high-energy astrophysics.
March 27, 2012
I present a brief review on space and time in different periods of physics, and then talk on the nature of space and time from physical arguments. I discuss the ways to test such a new perspective on space and time through searching for Lorentz violation in some physical processes. I also make an introduce to a newly proposed theory of Lorentz violation from basic considerations.
December 17, 1998
We develop a perturbative framework with which to discuss departures from exact Lorentz invariance and explore their potentially observable ramifications. Tiny non-invariant terms introduced into the standard model Lagrangian are assumed to be renormalizable (dimension $\le 4$), invariant under $SU(3)\otimes SU(2)\otimes U(1)$ gauge transformations, and rotationally and translationally invariant in a preferred frame. There are a total of 46 independent TCP-even perturbations ...