June 1, 2004
Similar papers 3
August 8, 2012
Residue-residue interactions that fold a protein into a unique three-dimensional structure and make it play a specific function impose structural and functional constraints on each residue site. Selective constraints on residue sites are recorded in amino acid orders in homologous sequences and also in the evolutionary trace of amino acid substitutions. A challenge is to extract direct dependences between residue sites by removing indirect dependences through other residues w...
August 29, 2010
Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies and underlies the inverse protein folding problem. Herein, we outline our theories for fold-recognition in the "twilight-zone" of sequence similarity (<25% identity). Our analyses demonstrate that structural sequence profiles built using Position-Specific Scoring Matrices (PSSMs) significantly outperform multiple popular homology-modeling algorithms for relating and predicting...
December 3, 2017
De novo prediction of protein folding is an open scientific challenge. Many folding models and force fields have been developed, yet all face difficulties converging to native conformations. Hydrophobicity scales (HSs) play a crucial role in such simulations as they define the energetic interactions between protein residues, thus determining the energetically favorable conformation. While many HSs have been developed over the years using various methods, it is surprising that...
August 23, 2002
Here we present an approximate analytical theory for the relationship between a protein structure's contact matrix and the shape of its energy spectrum in amino acid sequence space. We demonstrate a dependence of the number of sequences of low energy in a structure on the eigenvalues of the structure's contact matrix, and then use a Monte Carlo simulation to test the applicability of this analytical result to cubic lattice proteins. We find that the lattice structures with th...
January 14, 1998
We propose a novel method for the determination of the effective interaction potential between the amino acids of a protein. The strategy is based on the combination of a new optimization procedure and a geometrical argument, which also uncovers the shortcomings of any optimization procedure. The strategy can be applied on any data set of native structures such as those available from the Protein Data Bank (PDB). In this work, however, we explain and test our approach on simp...
January 18, 2010
Motivation: Protein sequence world is discrete as 20 amino acids (AA) while its structure world is continuous, though can be discretized into structural alphabets (SA). In order to reveal the relationship between sequence and structure, it is interesting to consider both AA and SA in a joint space. However, such space has too many parameters, so the reduction of AA is necessary to bring down the parameter numbers. Result: We've developed a simple but effective approach call...
July 12, 2015
Protein structure prediction remains a challenge in the field of computational biology. Traditional protein structure prediction approaches include template-based modelling (say, homology modelling, and threading), and ab initio. A threading algorithm takes a query protein sequence as input, recognizes the most likely fold, and finally reports the alignments of the query sequence to structure-known templates as output. The existing threading approaches mainly utilizes the inf...
February 26, 1999
An optimization technique is used to determine the pairwise interactions between amino acids in globular proteins. A numerical strategy is applied to a set of proteins for maximizing the native fold stability with respect to alternative structures obtained by gapless threading. The extracted parameters are shown to be very reliable for identifying the native states of proteins (unrelated to those in the training set) among thousands of conformations. The only poor performers ...
October 9, 2015
Protein structure prediction is a challenging and unsolved problem in computer science. Proteins are the sequence of amino acids connected together by single peptide bond. The combinations of the twenty primary amino acids are the constituents of all proteins. In-vitro laboratory methods used in this problem are very time-consuming, cost-intensive, and failure-prone. Thus, alternative computational methods come into play. The protein structure prediction problem is to find th...
May 9, 2000
While all the information required for the folding of a protein is contained in its amino acid sequence, one has not yet learnt how to extract this information so as to predict the detailed, biological active, three-dimensional structure of a protein whose sequence is known. This situation is not particularly satisfactory, in keeping with the fact that while linear sequencing of the amino acids specifying a protein is relatively simple to carry out, the determination of the f...