August 22, 2005
Several guiding principles for thought processes are proposed and a neural-network-type model implementing these principles is presented and studied. We suggest to consider thinking within an associative network built-up of overlapping memory states. We consider a homogeneous associative network as biological considerations rule out distinct conjunction units between the information (the memories) stored in the brain. We therefore propose that memory states have a dual functionality: They represent on one side the stored information and serve, on the other side, as the associative links in between the different dynamical states of the network which consists of transient attractors. We implement these principles within a generalized winners-take-all neural network with sparse coding and an additional coupling to local reservoirs. We show that this network is capable to generate autonomously a self-sustained time-series of memory states which we identify with a thought process. Each memory state is associatively connected with its predecessor. This system shows several emerging features, it is able (a) to recognize external patterns in a noisy background, (b) to focus attention autonomously and (c) to represent hierarchical memory states with an internal structure.
Similar papers 1
March 1, 2007
The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept fo...
January 20, 2009
The human brain is autonomously active. To understand the functional role of this self-sustained neural activity, and its interplay with the sensory data input stream, is an important question in cognitive system research and we review here the present state of theoretical modelling. This review will start with a brief overview of the experimental efforts, together with a discussion of transient vs. self-sustained neural activity in the framework of reservoir computing. The...
March 29, 2022
This article presents an artificial intelligence (AI) architecture intended to simulate the human working memory system as well as the manner in which it is updated iteratively. It features several interconnected neural networks designed to emulate the specialized modules of the cerebral cortex. These are structured hierarchically and integrated into a global workspace. They are capable of temporarily maintaining high-level patterns akin to the psychological items maintained ...
March 29, 2022
This article provides an analytical framework for how to simulate human-like thought processes within a computer. It describes how attention and memory should be structured, updated, and utilized to search for associative additions to the stream of thought. The focus is on replicating the dynamics of the mammalian working memory system, which features two forms of persistent activity: sustained firing (preserving information on the order of seconds) and synaptic potentiation ...
July 6, 2022
A fundamental feature of human intelligence is that we accumulate and transfer knowledge as a society and across generations. We describe here a network architecture for the human brain that may support this feature and suggest that two key innovations were the ability to consider an offline model of the world, and the use of language to record and communicate knowledge within this model. We propose that these two innovations, together with pre-existing mechanisms for associa...
June 5, 2024
Networks of interconnected neurons communicating through spiking signals offer the bedrock of neural computations. Our brains spiking neural networks have the computational capacity to achieve complex pattern recognition and cognitive functions effortlessly. However, solving real-world problems with artificial spiking neural networks (SNNs) has proved to be difficult for a variety of reasons. Crucially, scaling SNNs to large networks and processing large-scale real-world data...
December 6, 1994
In this lecture I will present some models of neural networks that have been developed in the recent years. The aim is to construct neural networks which work as associative memories. Different attractors of the network will be identified as different internal representations of different objects. At the end of the lecture I will present a comparison among the theoretical results and some of the experiments done on real mammal brains.
December 16, 2015
Reverse engineering the brain is proving difficult, perhaps impossible. While many believe that this is just a matter of time and effort, a different approach might help. Here, we describe a very simple idea which explains the power of the brain as well as its structure, exploiting complex dynamics rather than abstracting it away. Just as a Turing Machine is a Universal Digital Computer operating in a world of symbols, we propose that the brain is a Universal Dynamical System...
March 23, 2004
For the retrieval dynamics of sparsely coded attractor associative memory models with synaptic noise the inclusion of a macroscopic time-dependent threshold is studied. It is shown that if the threshold is chosen appropriately as a function of the cross-talk noise and of the activity of the memorized patterns, adapting itself automatically in the course of the time evolution, an autonomous functioning of the model is guaranteed. This self-control mechanism considerably improv...
April 10, 2024
I introduce a novel associative memory model named Correlated Dense Associative Memory (CDAM), which integrates both auto- and hetero-association in a unified framework for continuous-valued memory patterns. Employing an arbitrary graph structure to semantically link memory patterns, CDAM is theoretically and numerically analysed, revealing four distinct dynamical modes: auto-association, narrow hetero-association, wide hetero-association, and neutral quiescence. Drawing insp...