July 14, 2006
Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.
Similar papers 1
November 27, 2019
In nonequilibrium chemical reaction systems, a fundamental relationship between unbalanced kinetic one-way fluxes and thermodynamic chemical driving forces is believed to exists. However this relation has been rigorously demonstrated only in a few cases in which one-way fluxes are well defined. In terms of its stochastic kinetic representation, we formulate the one-way fluxes for a general chemical reaction far from equilibrium, with arbitrary complex mechanisms, multiple int...
October 21, 2021
We investigate the thermodynamic implications of two control mechanisms of open chemical reaction networks. The first controls the concentrations of the species that are exchanged with the surroundings, while the other controls the exchange fluxes. We show that the two mechanisms can be mapped one into the other and that the thermodynamic theories usually developed in the framework of concentration control can be applied to flux control as well. This implies that the thermody...
February 23, 2016
We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of elementary reactions. Their dynamics is described by deterministic rate equations satisfying mass action law. Our most general framework considers open networks driven by time-dependent chemostats. The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced. The difference between this latter and its equilibrium form represents the minim...
February 2, 2022
We provide a rigorous definition of free-energy transduction and its efficiency in arbitrary -- linear or nonlinear -- open chemical reaction networks (CRNs) operating at steady state. Our method is based on the knowledge of the stoichiometric matrix and of the chemostatted species (i.e. the species maintained at constant concentration by the environment) to identify the fundamental currents and forces contributing to the entropy production. Transduction occurs when the curre...
August 11, 2021
Most biochemical reactions in living cells are open systems interacting with environment through chemostats to exchange both energy and materials. At a mesoscopic scale, the number of each species in those biochemical reactions can be modeled by a random time-changed Poisson processes. To characterize macroscopic behaviors in the large volume limit, the law of large numbers in the path space determines a mean-field limit nonlinear reaction rate equation describing the dynamic...
April 22, 2000
Free energy and entropy are examined in detail from the standpoint of classical thermodynamics. The approach is logically based on the fact that thermodynamic work is mediated by thermal energy through the tendency for nonthermal energy to convert spontaneously into thermal energy and for thermal energy to distribute spontaneously and uniformly within the accessible space. The fact that free energy is a Second-Law, expendable energy that makes it possible for thermodynamic wo...
January 13, 2016
From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\rightarrow\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy giv...
April 4, 2014
In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly un...
July 1, 2020
Chemical reaction networks (CRNs) are prototypical complex systems because reactions are nonlinear and connected in intricate ways, and they are also essential to understand living systems. Here, I discuss how recent developments in nonequilibrium thermodynamics provide new insight on how CRNs process energy and perform sophisticated tasks, and describe open challenges in the field.
April 1, 2012
In this article the Gordan theorem is applied to the thermodynamics of a chemical reaction network at steady state. From a theoretical viewpoint it is equivalent to the Clausius formulation of the second law for the out of equilibrium steady states of chemical networks, i.e. it states that the exclusion (presence) of closed reactions loops makes possible (impossible) the definition of a thermodynamic potential and vice versa. On the computational side, it reveals that calcula...