July 25, 2006
Similar papers 2
February 16, 2005
Thanks to recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiment...
June 14, 2010
Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI networks of several model organisms were investigated. Methodological improvements now allow the analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This provides the oppo...
July 1, 2002
Two processes can influence the evolution of protein interaction networks: addition and elimination of interactions between proteins, and gene duplications increasing the number of proteins and interactions. The rates of these processes can be estimated from available Saccharomyces cerevisiae genome data and are sufficiently high to affect network structure on short time scales. For instance, more than 100 interactions may be added to the yeast network every million years, a ...
July 15, 2004
It has recently been discovered that many biological systems, when represented as graphs, exhibit a scale-free topology. One such system is the set of structural relationships among protein domains. The scale-free nature of this and other systems has previously been explained using network growth models that, while motivated by biological processes, do not explicitly consider the underlying physics or biology. In the present work we explore a sequence-based model for the evol...
December 8, 2003
Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce a hybrid network model composed of the yeast PIN and the protein family interaction network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed ones: gene duplication, di...
January 4, 2005
We demonstrate that Protein-Protein Interaction (PPI) networks in several eucaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically the likelihood of a protein to physically interact with itself was found to be proportional to the total number of ...
June 24, 2019
Interacting proteins coevolve at multiple but interconnected scales, from the residue-residue over the protein-protein up to the family-family level. The recent accumulation of enormous amounts of sequence data allows for the development of novel, data-driven computational approaches. Notably, these approaches can bridge scales within a single statistical framework. While being currently applied mostly to isolated problems on single scales, their immense potential for an evol...
October 19, 2003
Understanding why some cellular components are conserved across species, while others evolve rapidly is a key question of modern biology. Here we demonstrate that in S. cerevisiae proteins organized in cohesive patterns of interactions are conserved to a significantly higher degree than those that do not participate in such motifs. We find that the conservation of proteins within distinct topological motifs correlates with the motif's inter-connectedness and function and also...
October 18, 2008
Sequence comparison and alignment has had an enormous impact on our understanding of evolution, biology, and disease. Comparison and alignment of biological networks will likely have a similar impact. Existing network alignments use information external to the networks, such as sequence, because no good algorithm for purely topological alignment has yet been devised. In this paper, we present a novel algorithm based solely on network topology, that can be used to align any tw...
April 19, 2010
Various molecular interaction networks have been claimed to follow power-law decay for their global connectivity distribution. It has been proposed that there may be underlying generative models that explain this heavy-tailed behavior by self-reinforcement processes such as classical or hierarchical scale-free network models. Here we analyze a comprehensive data set of protein-protein and transcriptional regulatory interaction networks in yeast, an E. coli metabolic network, ...