July 25, 2006
Similar papers 5
March 21, 2003
In this paper, we study the large-scale protein interaction network of yeast uti lizing a stochastic method based upon percolation of random graphs. In order to find the global features of connectivities in the network, we introduce numeric al measures that quantify (1) how strongly a protein ties with the other parts o f the network and (2) how significantly an interaction contributes to the integr ity of the network. Our study shows that the distribution of essential protei...
April 27, 2007
The properties of certain networks are determined by hidden variables that are not explicitly measured. The conditional probability (propagator) that a vertex with a given value of the hidden variable is connected to k of other vertices determines all measurable properties. We study hidden variable models and find an averaging approximation that enables us to obtain a general analytical result for the propagator. Analytic results showing the validity of the approximation are ...
October 26, 2023
The protein-protein interaction (PPI) network provides an overview of the complex biological reactions vital to an organism's metabolism and survival. Even though in the past PPI network were compared across organisms in detail, there has not been large-scale research on how individual PPI networks reflect on the species relationships. In this study we aim to increase our understanding of the tree of life and taxonomy by gleaming information from the PPI networks. We successf...
June 22, 2004
High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. We show that we can use the conserved propert...
August 12, 2004
Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of mod...
June 9, 2005
A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. To overcome these difficulties, we employ an alternative meth...
November 3, 2009
Just as physicists strive to develop a TOE (theory of everything), which explains and unifies the physical laws of the universe, the life-scientist wishes to uncover the TOE as it relates to cellular systems. This can only be achieved with a quantitative platform that can comprehensively deduce and relate protein structure, functional, and evolution of genomes and proteomes in a comparative fashion. Were this perfected, proper analyses would start to uncover the underlying ph...
May 5, 2014
Protein-protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues tha...
April 11, 2005
Metabolic networks are known to be scale free but the evolutionary origin of this structural property is not clearly understood. One way of studying the dynamical process is to compare the metabolic networks of species that have arisen at different points in evolution and hence are related to each other to varying extents. We have compared the reaction sets of each metabolite across and within 15 groups of species. For a given pair of species and a given metabolite, the numbe...
March 12, 2012
Genome-wide protein-protein interaction (PPI) data are readily available thanks to recent breakthroughs in biotechnology. However, PPI networks of extant organisms are only snapshots of the network evolution. How to infer the whole evolution history becomes a challenging problem in computational biology. In this paper, we present a likelihood-based approach to inferring network evolution history from the topology of PPI networks and the duplication relationship among the para...