October 24, 2006
Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive and directional fashion. We show that the observed step-like motion is possible through time varying charge distributions furnished by the ATP hydrolysis circle while the static charge configuration on the microtuble provides the guide for motion. Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin and microtubule.
Similar papers 1
December 30, 2003
Kinesin motors have been studied extensively both experimentally and theoretically. However, the microscopic mechanism of the processive movement of kinesin is still an open question. In this paper, we propose a hand-over-hand model for the processivity of kinesin, which is based on chemical, mechanical, and electrical couplings. In the model the processive movement does not need to rely on the two heads' coordination in their ATP hydrolysis and mechanical cycles. Rather, the...
July 10, 2009
Conventional kinesin is a dimeric motor protein that transports membranous organelles toward the plus-end of microtubules (MTs). Individual kinesin dimers show steadfast directionality and hundreds of consecutive steps, yetthe detailed physical mechanism remains unclear. Here we compute free energies for the entire dimer-MT system for all possible interacting configurations by taking full account of molecular details. Employing merely first principles and several measured bin...
April 13, 2008
Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on two legs along the biopolymer microtubule. The number of accidental backsteps that kinesin takes appears to be much larger than what one would expect given the amount of free energy that ATP hydrolysis makes available. This is puzzling as more than a billion years of natural selection should have optimized the motor protein for its speed and efficiency. But more backstepping allows for the productio...
June 24, 2004
Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward steps and detachments. A theoretical study of mechanochemical coupling in kinesins, which extends the approach used successfully to describe the dynamics ...
December 29, 2021
Kinesin-1 is an ATP-driven, two-headed motor protein that transports intracellular cargoes along microtubule. Based on recent experimental observations, we formulate a mechanochemical model for it, in which forward/backward/futile cycle of kinesin-1 can be realized through multiple biochemical pathways. Our results show that both forward and futile cycles consist of two biochemical pathways, while backward cycle may be realized through six possible pathways. Backward motion o...
October 24, 2007
Among the multiple steps constituting the kinesin's mechanochemical cycle, one of the most interesting events is observed when kinesins move an 8-nm step from one microtubule (MT)-binding site to another. The stepping motion that occurs within a relatively short time scale (~100 microsec) is, however, beyond the resolution of current experiments, therefore a basic understanding to the real-time dynamics within the 8-nm step is still lacking. For instance, the rate of power st...
April 18, 2009
Kinesins move processively toward the plus end of microtubules by hydrolyzing ATP for each step. From an enzymatic perspective, the mechanism of mechanical motion coupled to the nucleotide chemistry is often well explained using a single-loop cyclic reaction. However, several difficulties arise in interpreting kinesin's backstepping within this framework, especially when external forces oppose the motion of kinesin. We review evidence, such as an ATP-independent stall force a...
July 10, 2009
Conventional kinesin is a homodimeric motor protein that unidirectionally transports organelles along filamentous microtubule (MT) by hydrolyzing ATP molecules. This study shows that the load modulations of ATP turnover and head diffusion are both essential in determining the performance of the dimer under loads. It is found that the consecutive run length of the dimer critically depends upon a few pathways, leading to the detachment of individual heads from MT. Modifying rat...
December 1, 2015
Conventional kinesin walks by a hand-over-hand mechanism on the microtubule (MT) by taking $\sim$ 8$nm$ discrete steps, and consumes one ATP molecule per step. The time needed to complete a single step is on the order of twenty microseconds. We show, using simulations of a coarse-grained model of the complex containing the two motor heads, the MT, and the coiled coil that in order to obtain quantitative agreement with experiments for the stepping kinetics hydrodynamic interac...
April 29, 2016
We model and simulate the stepping dynamics of the kinesin motor including electric and mechanical forces, environmental noise, and the complicated potentials produced by tracking and neighboring protofilaments. Our dynamical model supports the hand-over-hand mechanism of the kinesin stepping. Our theoretical predictions and numerical simulations include the off-axis displacements of the kinesin heads while the steps are performed. The results obtained are in a good agreement...