February 26, 2019
Single kinesin molecular motors can processively move along a microtubule (MT) a few micrometers on average before dissociating. However, cellular length scales over which transport occurs are several hundred microns and more. Why seemingly unreliable motors are used to transport cellular cargo remains poorly understood. We propose a new theory for how low processivity, the average length of a single bout of directed motion, can enhance cellular transport when motors and carg...
November 29, 2011
We analyze theoretically the problem of cargo transport along microtubules by motors of two species with opposite polarities. We consider two different one-dimensional models previously developed in the literature. On the one hand, a quite widespread model which assumes equal force sharing, here referred to as mean field model (MFM). On the other hand, a stochastic model (SM) which considers individual motor-cargo links. We find that in generic situations the MFM predicts lar...
May 18, 2014
The fate of every eukaryotic cell subtly relies on the exceptional mechanical properties of microtubules. Despite significant efforts, understanding their unusual mechanics remains elusive. One persistent, unresolved mystery is the formation of long-lived arcs and rings, e.g. in kinesin-driven gliding assays. To elucidate their physical origin we develop a model of the inner workings of the microtubule's lattice, based on recent experimental evidence for a conformational swit...
December 3, 2018
Cytoskeletal networks are foundational examples of active matter and central to self-organized structures in the cell. In vivo, these networks are active and heavily crosslinked. Relating their large-scale dynamics to properties of their constituents remains an unsolved problem. Here we study an in vitro system made from microtubules and XCTK2 kinesin motors, which forms an aligned and active gel. Using photobleaching we demonstrate that the gel's aligned microtubules, driven...
November 4, 2011
Membrane tubes are important elements for living cells to organize many functions. Experiments have found that membrane tube can be extracted from giant lipid vesicles by a group of kinesin. How these motors cooperate in extracting the fluid-like membrane tube is still unclear. In this paper, we propose a new cooperation mechanism called two-track-dumbbell model, in which kinesin is regarded as a dumbbell with an end (tail domain) tightly bound onto the fluid-like membrane an...
October 6, 2007
Intracellular transport along microtubules or actin filaments, powered by molecular motors such as kinesins, dyneins or myosins, has been recently modeled using one-dimensional driven lattice gases. We discuss some generalizations of these models, that include extended particles and defects. We investigate the feasibility of single molecule experiments aiming to measure the average motor density and to locate the position of traffic jams by mean of a tracer particle. Finally,...
December 30, 2021
Molecular motors belonging to the kinesin and myosin super family hydrolyze ATP by cycling through a sequence of chemical states. These cytoplasmic motors are dimers made up of two linked identical monomeric globular proteins. Fueled by the free energy generated by ATP hydrolysis, the motors walk on polar tracks (microtubule or filamentous actin) processively, which means that only one head detaches and executes a mechanical step while the other stays bound to the track. Thus...
December 11, 2013
As a complementary tool to nanofluidics, biomolecular based transport is envisioned for nanotechnological devices. We report a new method for guiding microtubule shuttles on multi-walled carbon nanotube tracks, aligned by dielectrophoresis on a functionalized surface. In the absence of electric field and in fluid flow, alignment is maintained. The directed translocation of kinesin propelled microtubules has been investigated using fluorescence microscopy. To our knowledge, th...
December 19, 2008
Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. Here we describe a simple model that incorporates directional motion and destabilization of the MT plus end by kinesin 8. Our model quantitatively reproduces the key features of length-vs-time traces fo...
October 12, 2021
Biomolecular motor proteins that generate forces by consuming chemical energy obtained from ATP hydrolysis are pivotal for organizing broad cytoskeletal structures in living cells. The control of such cytoskeletal structures benefits programmable protein patterning; however, our current knowledge is limited owing to the underdevelopment of an engineering approach for controlling pattern formation. Here, we demonstrate the tailoring of assembled patterns of microtubules (MTs) ...