March 16, 2011
We present a general framework to study the thermodynamic denaturation of double-stranded DNA under superhelical stress. We report calculations of position- and size-dependent opening probabilities for bubbles along the sequence. Our results are obtained from transfer-matrix solutions of the Zimm-Bragg model for unconstrained DNA and of a self-consistent linearization of the Benham model for superhelical DNA. The numerical efficiency of our method allows for the analysis of e...
December 22, 2006
A statistical model of homopolymer DNA, coupling internal base pair states (unbroken or broken) and external thermal chain fluctuations, is exactly solved using transfer kernel techniques. The dependence on temperature and DNA length of the fraction of denaturation bubbles and their correlation length is deduced. The thermal denaturation transition emerges naturally when the chain fluctuations are integrated out and is driven by the difference in bending (entropy dominated) f...
February 7, 2013
The closure of long equilibrated denaturation bubbles in DNA is studied using Brownian dynamics simulations. A minimal mesoscopic model is used where the double-helix is made of two interacting bead-spring freely rotating strands, with a non-zero torsional modulus in the duplex state, $\kappa_\phi=$200 to 300 kT. For DNAs of lengths N=40 to 100 base-pairs (bps) with a large initial bubble in their middle, long closure times of 0.1 to 100 microseconds are found. The bubble sta...
March 1, 2012
The closure dynamics of a pre-equilibrated DNA denaturation bubble is studied using both Brownian dynamics simulations and an analytical approach. The numerical model consists of two semi-flexible interacting single strands (ssDNA) and a bending modulus which depends on the base-pair state, with double-strand DNA (dsDNA) segments being 50 times stiffer than ssDNA ones. For DNA lengths from N=20 to 100 base-pairs (bp) and initial bubble sizes of N-6 bp, long closure times of 0...
November 22, 2004
We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the obse...
July 2, 2008
The dynamics of loops at the DNA denaturation transition is studied. A scaling argument is used to evaluate the asymptotic behavior of the autocorrelation function of the state of complementary bases (either open or closed). The long-time asymptotic behavior of the autocorrelation function is expressed in terms of the entropy exponent, c, of a loop. The validity of the scaling argument is tested using a microscopic model of an isolated loop and a toy model of interacting loop...
October 29, 2001
We study the tautomeric transitions in base pairs of DNA considering elastic properties of DNA as classical and tunneling of protons as quantum, and show that the dynamics of the transitions admits of soliton like solutions whose shape and size strongly depend on the structure of the double helix. In particular, we have found that the set of discrete breathers can be drastically modified by the interplay of the torsional and elastic constants. Our results may have a bearing u...
June 16, 2004
The formation of bubbles in nucleic acids (NAs) are fundamental in many biological processes such as DNA replication, recombination, telomeres formation, nucleotide excision repair, as well as RNA transcription and splicing. These precesses are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach we model the structure of the DNA duplex by a nonlinear network of coupled oscillators. We show th...
November 24, 2008
The conclusions presented in this Letter arXiv:cond-mat/0412591 rely on not converged calculations and should be considered with caution.
July 19, 2022
By extending the classical Peyrard-Bishop model, we are able to obtain a fully analytical description for the mechanical resistance of DNA under stretching at variable values of temperature, number of base pairs and intrachains and interchains bonds stiffness. In order to compare elasticity and temperature effects, we first analyze the system in the zero temperature mechanical limit, important to describe several experimental effects including possible hysteresis. We then ana...