December 30, 2006
Similar papers 5
July 3, 2013
Gene expression is a central process to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges among traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided pro...
July 24, 2014
Gene regulatory network inference uses genome-wide transcriptome measurements in response to genetic, environmental or dynamic perturbations to predict causal regulatory influences between genes. We hypothesized that evolution also acts as a suitable network perturbation and that integration of data from multiple closely related species can lead to improved reconstruction of gene regulatory networks. To test this hypothesis, we predicted networks from temporal gene expression...
March 30, 2000
The regulation of cellular function is often controlled at the level of gene transcription. Such genetic regulation usually consists of interacting networks, whereby gene products from a single network can act to control their own expression or the production of protein in another network. Engineered control of cellular function through the design and manipulation of such networks lies within the constraints of current technology. Here we develop a model describing the regula...
January 24, 2013
We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expression solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively an...
February 10, 2015
Transcriptional repression may cause transcriptional noise by a competition between repressor and RNA polymerase binding. Although promoter activity is often governed by a single limiting step, we argue here that the size of the noise strongly depends on whether this step is the initial equilibrium binding or one of the subsequent unidirectional steps. Overall, we show that nonequilibrium steps of transcription initiation systematically increase the cell-to-cell heterogeneity...
July 29, 2016
Timing is essential for many cellular processes, from cellular responses to external stimuli to the cell cycle and circadian clocks. Many of these processes are based on gene expression. For example, an activated gene may be required to reach in a precise time a threshold level of expression that triggers a specific downstream process. However, gene expression is subject to stochastic fluctuations, naturally inducing an uncertainty in this threshold-crossing time with potenti...
May 14, 2013
In this work we propose a model for gene expression based on the theory of random dynamical systems (RDS) and show that it has a "modularity property" in the following sense: given any collection of genes that are linked in a transcriptional network, if each of them is individually described by a certain class of RDS then there is a natural, and essentially unique, prescription for coupling them together, respecting the network topology, in such a way that the collective syst...
September 28, 2022
While noise is generally associated with uncertainties and often has a negative connotation in engineering, living organisms have evolved to adapt to (and even exploit) such uncertainty to ensure the survival of a species or implement certain functions that would have been difficult or even impossible otherwise. In this article, we review the role and impact of noise in systems and synthetic biology, with a particular emphasis on its role in the genetic control of biological ...
October 20, 2023
The processes of gene expression are inherently stochastic, even for essential genes required for growth. How does the cell maximize fitness in light of noise? To answer this question, we build a mathematical model to explore the trade-off between metabolic load and growth robustness. The model predicts novel principles of central dogma regulation: Optimal protein expression levels are vastly overabundant. Essential genes are transcribed above a lower limit of one message per...
April 18, 2023
Transcription commonly occurs in bursts, with alternating productive (ON) and quiescent (OFF) periods, governing mRNA production rates. Yet, how transcription is regulated through bursting dynamics remains unresolved. In this study, we conduct real-time measurements of endogenous transcriptional bursting with single-mRNA sensitivity. Leveraging the diverse transcriptional activities in early fly embryos, we uncover stringent relationships between bursting parameters. Specific...