June 8, 2001
We provide a review of both new experimental and theoretical developments in the Casimir effect. The Casimir effect results from the alteration by the boundaries of the zero-point electromagnetic energy. Unique to the Casimir force is its strong dependence on shape, switching from attractive to repulsive as function of the size, geometry and topology of the boundary. Thus the Casimir force is a direct manifestation of the boundary dependence of quantum vacuum. We discuss in...
April 20, 2016
Zero-frequency Casimir theory is analyzed from different viewpoints, focusing on the Drude-plasma issue that turns up when one considers thermal corrections to the Casimir force. The problem is that the plasma model, although leaving out dissipation in the material, apparently gives the best agreement with recent experiments. We consider a dielectric plate separated from a dielectric half-space by a vacuum gap, both media being similar. We consider the following categories: (...
September 16, 2009
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume ...
September 27, 1999
We study the Casimir force between a perfectly conducting and an infinitely permeable plate with the radiation pressure approach. This method illustrates how a repulsive force arises as a consequence of the redistribution of the vacuum-field modes corresponding to specific boundary conditions. We discuss also how the method of the zero-point radiation pressure follows from QED.
April 28, 2007
The analytic asymptotic expressions for the Casimir free energy, pressure and entropy at low temperature in the configuration of one metal and one dielectric plate are obtained. For this purpose we develop the perturbation theory in a small parameter proportional to the product of the separation between the plates and the temperature. This is done using both the simplified model of an ideal metal and of a dielectric with constant dielectric permittivity and for the realistic ...
December 1, 2003
We calculate exactly the Casimir force between a spherical particle and a plane, both with arbitrary dielectric properties, in the non-retarded limit. Using a Spectral Representation formalism, we show that the Casimir force of a sphere made of a material A and a plane made of a material B, differ from the case when the sphere is made of B, and the plane is made of A. The differences in energy and force show the importance of the geometry, and make evident the necessity of re...
June 2, 2004
The phenomena implied by the existence of quantum vacuum fluctuations, grouped under the title of the Casimir effect, are reviewed, with emphasis on new results discovered in the past four years. The Casimir force between parallel plates is rederived as the strong-coupling limit of $\delta$-function potential planes. The role of surface divergences is clarified. A summary of effects relevant to measurements of the Casimir force between real materials is given, starting from a...
November 4, 2001
The situation with the temperature corrections to the Casimir force between real metals of finite conductivity is reported. It is shown that the plasma dielectric function is well adapted to the Lifshitz formula and leads to reasonable results for real conductors. The Drude dielectric function which describes media with dissipation is found not to belong to the application range of the Lifshitz formula at nonzero temperature. For Drude metals the special modification of the z...
January 25, 2019
We calculate the Casimir forces in two configurations, namely, three parallel dielectric slabs and a dielectric slab between two perfectly conducting plates, where the dielectric materials are dispersive and inhomogeneous in the direction perpendicular to the interfaces. A renormalization scheme is proposed consisting of subtracting the effect of one interface with a single inhomogeneous medium. Some examples are worked out to illustrate this scheme. Our method always gives f...
July 23, 1999
A brief review of the recent experimental verifications of the Casimir force between extended bodies is presented. With modern techniques, it now appears feasible to test the force law with 1% precision; I will address the issues relating to the interpretation of experiments at this level of accuracy