July 31, 2002
We argue that on its face, entanglement theory satisfies laws equivalent to thermodynamics if the theory can be made reversible by adding certain bound entangled states as a free resource during entanglement manipulation. Subject to plausible assumptions, we prove that this is not the case in general, and discuss the implications of this for the thermodynamics of entanglement.
Similar papers 1
October 14, 2008
Entanglement is central both to the foundations of quantum theory and, as a novel resource, to quantum information science. The theory of entanglement establishes basic laws, such as the non-increase of entanglement under local operations, that govern its manipulation and aims to draw from them formal analogies to the second law of thermodynamics. However, while in the second law the entropy uniquely determines whether a state is adiabatically accessible from another, the man...
November 3, 2021
Many fruitful analogies have emerged between the theories of quantum entanglement and thermodynamics, motivating the pursuit of an axiomatic description of entanglement akin to the laws of thermodynamics. A long-standing open problem has been to establish a true second law of entanglement, and in particular a unique function which governs all transformations between entangled systems, mirroring the role of entropy in thermodynamics. Contrary to previous promising evidence, he...
July 5, 2001
The first step in quantum information theory is the identification of entanglement as a valuable resource. The next step is learning how to exploit this resource efficiently. We learn how to exploit entanglement efficiently by applying analogues of thermodynamical concepts. These concepts include reversibility, entropy, and the distinction between intensive and extensive quantities. We discuss some of these analogues and show how they lead to a measure of entanglement for pur...
October 29, 1996
We point out formal correspondences between thermodynamics and entanglement. By applying them to previous work, we show that entropy of entanglement is the unique measure of entanglement for pure states.
March 31, 2016
A review is given on the thermodynamical structure of bipartite entanglement. By comparing it to the axiomatic formulation of thermodynamics presented by Giles it is shown that for finite dimensional systems the two theories are formally inequivalent. The same approach is used to demonstrate the full equivalence in the asymptotic limit for pure quantum states. For mixed states a different method for obtaining the second law is described applied to two different classes of ope...
October 31, 2007
We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identif...
May 28, 2015
This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious informat...
November 16, 2011
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here we return to the basic questions of thermodynamics using the formali...
May 17, 2024
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another. Answers to these questions enable us to optimize the performance of tasks such as quantum key distribution and quantum teleportation, since certain entangled states are more useful than others for these applications. It has been conjectured that entangled state transformations could be executed reversibly in an asymptotic regime, mirro...
March 24, 2000
This paper is a non-technical, informal presentation of our theory of the second law of thermodynamics as a law that is independent of statistical mechanics and that is derivable solely from certain simple assumptions about adiabatic processes for macroscopic systems. It is not necessary to assume a-priori concepts such as "heat", "hot and cold", "temperature". These are derivable from entropy, whose existence we derive from the basic assumptions. See cond-mat/9708200 and mat...