September 6, 2002
Similar papers 5
June 6, 2015
We give a simple non-mathematical explanation of Bell's inequality. Using the inequality, we show how the results of Einstein-Podolsky-Rosen (EPR) experiments violate the principle of strong locality, also known as local causality. This indicates, given some reasonable-sounding assumptions, that some sort of faster-than-light influence is present in nature. We discuss the implications, emphasizing the relationship between EPR and the Principle of Relativity, the distinction b...
June 20, 2000
The controversy between relativistic causality and quantum non-locality can be resolved by establishing the general relativistic background of quantum non-locality.
September 4, 2013
A necessary and natural change in our application of quantum mechanics to separated systems is shown to reconcile quantum mechanics and local realism. An analysis of separation and localization justifies the proposed change in application of quantum mechanics. An important EPRB experiment is reconsidered and it is seen that when it is correctly interpreted it supports local realism. This reconciliation of quantum mechanics with local realism allows the axiom sets of quantum m...
August 30, 2001
A local realistic model for quantum mechanics of two-particle Einstein-Podolsky-Rosen pairs is proposed. In this model, it is the strict obedience of conservation laws in each event at the quantum level that uphold the perfect correlation of two spatially-separated particles, instead of nonlocality in the orthodox formulation of quantum mechanics. Therefore, one can conclude that all components of the spin of two particles, and the position and momentum of a particle can be m...
October 4, 2007
The purposes of the present article are: a) To show that non-locality leads to the transfer of certain amounts of energy and angular momentum at very long distances, in an absolutely strange and unnatural manner, in any model reproducing the quantum mechanical results. b) To prove that non-locality is the result only of the zero spin state assumption for distant particles, which explains its presence in any quantum mechanical model. c) To reintroduce locality, simply by denyi...
November 13, 2010
It is argued that the Heisenberg picture of standard quantum mechanics does not save Einstein locality as claimed in Deutsch and Hayden (2000). In particular, the EPR-type correlations that DH obtain by comparing two qubits in a local manner are shown to exist before that comparison. In view of this result, the local comparison argument would appear to ineffective in supporting their locality claim.
September 3, 2017
Relativistic invariance is a physical law verified in several domains of physics. The impossibility of faster than light influences is not questioned by quantum theory. In quantum electrodynamics, in quantum field theory and in the standard model relativistic invariance is incorporated by construction. Quantum mechanics predicts strong long range correlations between outcomes of spin projection measurements performed in distant laboratories. In spite of these strong correlati...
August 29, 2001
Recent experiment by Zhinden et al (Phys. Rev {\bf A} 63 02111, 2001) purports to test compatibility between relativity and quantum mechanics in the classic EPR setting. We argue that relativity has no role in the EPR argument based solely on non-relativistic quantum formalism. It is suggested that this interesting experiment may have significance to address fundamental questions on quantum probability.
January 4, 2023
The enigmatic nonlocal quantum correlation that was famously derided by Einstein as "spooky action at a distance" has now been experimentally demonstrated to be authentic. The quantum entanglement and nonlocal correlations emerged as inevitable consequences of John Bell's epochal paper on Bell's inequality. However, in spite of some extraordinary applications as well as attempts to explain the reason for quantum nonlocality, a satisfactory account of how Nature accomplishes t...
April 9, 2017
Some of the strategies which have been put forward in order to deal with the inconsistency between quantum mechanics and special relativity are examined. The EPR correlations are discussed as a simple example of quantum mechanical macroscopic effects with spacelike separation from their causes. It is shown that they can be used to convey information, whose reliability can be estimated by means of Bayes' theorem. Some of the current reasons advanced to deny that quantum mechan...