March 31, 2003
Similar papers 4
January 11, 2005
In this paper we analyze the security of the so-called quantum tomographic cryptography with the source producing entangled photons via an experimental scheme proposed in Phys. Rev. Lett. 92, 37903 (2004). We determine the range of the experimental parameters for which the protocol is secure against the most general incoherent attacks.
August 8, 2020
Due to the capability of tolerating high error rate and generating more key bits per trial, high-dimensional quantum key distribution attracts wide interest. Despite great progresses in high-dimensional quantum key distribution, there are still some gaps between theory and experiment. One of these is that the security of the secret key heavily depends on the number of the emitted signals. So far, the existing security proofs are only suitable in the case with an infinite or u...
May 3, 2013
Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question---they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with private key based on classical probabi...
December 10, 2018
Semi-quantum key distribution protocols are designed to allow two parties to establish a shared secret key, secure against an all-powerful adversary, even when one of the users is restricted to measuring and preparing quantum states in one single basis. While interesting from a theoretical standpoint, these protocols have the disadvantage that a two-way quantum communication channel is necessary which generally limits their theoretical efficiency and noise tolerance. In this ...
November 9, 2022
With the rapid development of quantum computers the currently secure cryptographic protocols may not stay that way. Quantum mechanics provides means to create an inherently secure communication channel that is protected by the laws of physics and not by the computational hardness of certain mathematical problems. This paper is a non-technical overview of quantum key distribution, one of the most well-known application of quantum cryptography, a type of cryptography poised to ...
February 18, 2008
We construct a practically implementable classical processing for the BB84 protocol and the six-state protocol that fully utilizes the accurate channel estimation method, which is also known as the quantum tomography. Our proposed processing yields at least as high key rate as the standard processing by Shor and Preskill. We show two examples of quantum channels over which the key rate of our proposed processing is strictly higher than the standard processing. In the second e...
March 9, 2022
The goal of quantum key distribution (QKD) is to establish a secure key between two parties connected by an insecure quantum channel. To use a QKD protocol in practice, one has to prove that a finite size key is secure against general attacks: no matter the adversary's attack, they cannot gain useful information about the key. A much simpler task is to prove security against collective attacks, where the adversary is assumed to behave identically and independently in each rou...
January 20, 1999
We review the main protocols for key distribution based on principles of quantum mechanics, describing the general underlying ideas, discussing implementation requirements and pointing out directions of current experiments. The issue of security is addressed both from a principal and real-life point of view.
January 29, 2021
Quantum cryptography exploits principles of quantum physics for the secure processing of information. A prominent example is secure communication, i.e., the task of transmitting confidential messages from one location to another. The cryptographic requirement here is that the transmitted messages remain inaccessible to anyone other than the designated recipients, even if the communication channel is untrusted. In classical cryptography, this can usually only be guaranteed und...
March 6, 2007
We present two new definitions of security for quantum ciphers which are inspired by the definition of entropic security and entropic indistinguishability defined by Dodis and Smith. We prove the equivalence of these two new definitions. We also propose a generalization of a cipher described by Dodis and Smith and show that it can actually encrypt n qubits using less than n bits of key under reasonable conditions and yet be secure in an information theoretic setting. This cip...