May 22, 2003
Experiments with individual trapped ions are ideally suited to investigate fundamental issues of quantum mechanics such as the measurement process. At the same time electrodynamically trapped ions have been used with great success to demonstrate quantum logic operations and are a candidate for scalable quantum computing. In this article a brief introduction is given to the basic steps that constitute a quantum measurement; in particular, measurements on single quantum systems are considered. Then experiments with single Yb+ are reviewed demonstrating the quantum Zeno paradox, as well as an experiment where an adaptive algorithm for quantum state estimation of qubits was implemented. In the last section of this article -- devoted to experiments and new ideas related to quantum information processing (QIP) with trapped ions -- the realization of various quantum channels using a hyperfine qubit of Yb+ is briefly discussed. Then a concept for QIP with trapped ions is reviewed where rf or microwave radiation is used instead of laser light for coherent manipulation of a collection of ions. In a suitably modified trap the ions form an artificial ion "molecule" to which the techniques developed in nuclear magnetic resonance and electron spin resonance experiments can be directly applied. Finally, coherent excitation of optical electric quadrupole transitions in Yb+ and Ba+ is reported. In addition, robust Raman cooling of a pair of Ba+ ions is reviewed.
Similar papers 1
February 3, 2006
Highly efficient, nearly deterministic, and isotope selective generation of Yb$^+$ ions by 1- and 2-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in \ybodd is investigated in order to optimize the purity of the prepared state and to time-optimize the detection process. Linear laser cooled Yb$^+$ ion crystals ions confined in a Paul trap are demonstrated. Advantageous features of different previous ion trap experimen...
August 5, 2007
We demonstrate the use of trapped ytterbium ions as quantum bits for quantum information processing. We implement fast, efficient state preparation and state detection of the first-order magnetic field-insensitive hyperfine levels of 171Yb+, with a measured coherence time of 2.5 seconds. The high efficiency and high fidelity of these operations is accomplished through the stabilization and frequency modulation of relevant laser sources.
March 27, 2000
We present a brief critical review of the proposals for quantum computation with trapped ions, with particular emphasis on the possibilities for quantum computation without the need for cooling to the quantum ground state of the ions' collective oscillatory modes.
April 8, 2019
Trapped ions are among the most promising systems for practical quantum computing (QC). The basic requirements for universal QC have all been demonstrated with ions and quantum algorithms using few-ion-qubit systems have been implemented. We review the state of the field, covering the basics of how trapped ions are used for QC and their strengths and limitations as qubits. In addition, we discuss what is being done, and what may be required, to increase the scale of trapped i...
September 25, 2008
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.
April 25, 2003
This paper discusses ways to implement two-qubit gate operations for quantum computing with cold trapped ions within one step. The proposed scheme is widely robust against parameter fluctuations and its simplicity might help to increase the number of qubits in present experiments. Basic idea is to use the quantum Zeno effect originating from continuous measurements on a common vibrational mode to realise gate operations with very high fidelities. The gate success rate can, in...
April 19, 2022
Quantum-logic techniques for state preparation, manipulation, and non-destructive interrogation are increasingly being adopted for experiments on single molecular ions confined in traps. The ability to control molecular ions on the quantum level via a co-trapped atomic ion offers intriguing possibilities for new experiments in the realms of precision spectroscopy, quantum information processing, cold chemistry, and quantum technologies with molecules. The present article give...
December 12, 2002
Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous emission are addressed. Finally, we describe a strategy to realize a large-scale device.
March 29, 2023
This pedagogical article elucidates the fundamentals of trapped-ion quantum computing, which is one of the potential platforms for constructing a scalable quantum computer. The evaluation of a trapped-ion system's viability for quantum computing is conducted in accordance with DiVincenzo's criteria.
April 12, 2013
Fast and efficient detection of the qubit state in trapped ion quantum information processing is critical for implementing quantum error correction and performing fundamental tests such as a loophole-free Bell test. In this work we present a simple qubit state detection protocol for a $^{171}$Yb$^+$ hyperfine atomic qubit trapped in a microfabricated surface trap, enabled by high collection efficiency of the scattered photons and low background photon count rate. We demonstra...