July 9, 2003
We introduce a ``Statistical Query Sampling'' model, in which the goal of an algorithm is to produce an element in a hidden set $Ssubseteqbit^n$ with reasonable probability. The algorithm gains information about $S$ through oracle calls (statistical queries), where the algorithm submits a query function $g(cdot)$ and receives an approximation to $Pr_{x in S}[g(x)=1]$. We show how this model is related to NMR quantum computing, in which only statistical properties of an ensemble of quantum systems can be measured, and in particular to the question of whether one can translate standard quantum algorithms to the NMR setting without putting all of their classical post-processing into the quantum system. Using Fourier analysis techniques developed in the related context of {em statistical query learning}, we prove a number of lower bounds (both information-theoretic and cryptographic) on the ability of algorithms to produces an $xin S$, even when the set $S$ is fairly simple. These lower bounds point out a difficulty in efficiently applying NMR quantum computing to algorithms such as Shor's and Simon's algorithm that involve significant classical post-processing. We also explicitly relate the notion of statistical query sampling to that of statistical query learning. An extended abstract appeared in the 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003), 2003. Keywords: statistical query, NMR quantum computing, lower bound
Similar papers 1
December 18, 2017
Query complexity is a model of computation in which we have to compute a function $f(x_1, \ldots, x_N)$ of variables $x_i$ which can be accessed via queries. The complexity of an algorithm is measured by the number of queries that it makes. Query complexity is widely used for studying quantum algorithms, for two reasons. First, it includes many of the known quantum algorithms (including Grover's quantum search and a key subroutine of Shor's factoring algorithm). Second, one c...
February 19, 2020
We propose a learning model called the quantum statistical learning QSQ model, which extends the SQ learning model introduced by Kearns to the quantum setting. Our model can be also seen as a restriction of the quantum PAC learning model: here, the learner does not have direct access to quantum examples, but can only obtain estimates of measurement statistics on them. Theoretically, this model provides a simple yet expressive setting to explore the power of quantum examples i...
September 21, 2005
Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.
June 26, 2003
A new algorithm for estimating the fraction of numbers that is present in a superpositional state which satisfies a given condition,is introduced.This algorithm is conceptually simple and does not require quantum Fourier transform.Also the number of steps required does not depend on the size of the data base to be searched.
April 18, 2019
We study quantum algorithms that are given access to trusted and untrusted quantum witnesses. We establish strong limitations of such algorithms, via new techniques based on Laurent polynomials (i.e., polynomials with positive and negative integer exponents). Specifically, we resolve the complexity of approximate counting, the problem of multiplicatively estimating the size of a nonempty set $S \subseteq [N]$, in two natural generalizations of quantum query complexity. Our ...
July 24, 2007
In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated unif...
January 24, 2017
This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.
December 23, 2016
Understanding quantum speed-up over classical computing is fundamental for the development of efficient quantum algorithms. In this paper, we study such problem within the framework of the Quantum Query Model, which represents the probability of output $x \in \{0,1\}^n$ as a function $\pi(x)$. We present a classical simulation for output probabilities $\pi$, whose error depends on the Fourier $1$-norm of $\pi$. Such dependence implies upper-bounds for the quotient between the...
December 3, 2020
We establish the first general connection between the design of quantum algorithms and circuit lower bounds. Specifically, let $\mathfrak{C}$ be a class of polynomial-size concepts, and suppose that $\mathfrak{C}$ can be PAC-learned with membership queries under the uniform distribution with error $1/2 - \gamma$ by a time $T$ quantum algorithm. We prove that if $\gamma^2 \cdot T \ll 2^n/n$, then $\mathsf{BQE} \nsubseteq \mathfrak{C}$, where $\mathsf{BQE} = \mathsf{BQTIME}[2^{...
April 1, 2020
We give a survey of the foundations of statistical queries and their many applications to other areas. We introduce the model, give the main definitions, and we explore the fundamental theory statistical queries and how how it connects to various notions of learnability. We also give a detailed summary of some of the applications of statistical queries to other areas, including to optimization, to evolvability, and to differential privacy.