January 30, 2004
Similar papers 2
February 1, 2003
The Casimir-Polder force is an attractive force between a polarizable atom and a conducting or dielectric boundary. Its original computation was in terms of the Lamb shift of the atomic ground state in an electromagnetic field (EMF) modified by boundary conditions along the wall and assuming a stationary atom. We calculate the corrections to this force due to a moving atom, demanding maximal preservation of entanglement generated by the moving atom-conducting wall system. We ...
July 3, 2019
We study quantum dissipative effects that result from the non-relativistic motion of an atom, coupled to a quantum real scalar field, in the presence of a static imperfect mirror. Our study consists of two parts: in the first, we consider accelerated motion in free space, namely, switching off the coupling to the mirror. This results in motion induced radiation, which we quantify via the vacuum persistence amplitude. In the model we use, the atom is described by a quantum har...
May 23, 2022
In a quantum sense, vacuum is not an empty void but full of virtual particles (fields). It may have long-range properties, be altered, and even undergo phase transitions. It is suggested that long-range properties of a quantum vacuum may be probed by distributing matter over a large spatial volume. Here, we study a simplest example of such, i.e., two uniformly accelerated Unruh-DeWitt detectors which are spatially separated, and examine the inter-detector interaction energy a...
March 8, 2017
In this paper we discuss and review several aspects of the effect of boundary conditions and structured environments on dispersion and resonance interactions involving atoms or molecules, as well as on vacuum field fluctuations. We first consider the case of a perfect mirror, which is free to move around an equilibrium position and whose mechanical degrees of freedom are treated quantum mechanically. We investigate how the quantum fluctuations of the mirror's position affect ...
September 13, 2007
The lateral Casimir-Polder force between an atom and a corrugated surface should allow one to study experimentally non trivial geometrical effects in quantum vacuum. Here, we derive the theoretical expression of this force in a scattering approach that accounts for the optical properties of the corrugated surface. We show that large corrections to the ``proximity force approximation'' could be measured using present-day technology with a Bose-Einstein condensate used as a vac...
December 12, 2018
Dispersion interactions are long-range interactions between neutral ground-state atoms or molecules, or polarizable bodies in general, due to their common interaction with the quantum electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the case of three or more atoms, are not additive. In this review, after having introduced the relevant coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations,...
July 20, 2009
Recently the Casmir-Polder force felt by an atom near a substrate under nonequilibrium stationary conditions has been studied theoretically with macroscopic quantum electrodyanamics (MQED) and verified experimentally with cold atoms. We give a quantum field theory derivation of the Langevin equation describing the atom's motion based on the influence functional method valid for fully nonequilibrium (nonstationary) conditions. The noise associated with the quantum field derive...
August 16, 1994
We consider an atom in interaction with a massless scalar quantum field. We discuss the structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom through the quantum vacuum. Our main intention is to identify and to analyze quantitatively the distinct contributions of vacuum fluctuations and radiation reaction to the spontaneous excitation of a uniformly accelerated atom in its ground state. This gives an understanding of the role o...
September 20, 2019
Some of the most prominent theoretical predictions of modern times, e.g., the Unruh effect, Hawking radiation, and gravity-assisted particle creation, are supported by the fact that various quantum constructs like particle content and vacuum fluctuations of a quantum field are observer-dependent. Despite being fundamental in nature, these predictions have not yet been experimentally verified because one needs extremely strong gravity (or acceleration) to bring them within the...
November 11, 2004
The Casimir effect is a well-known macroscopic consequence of quantum vacuum fluctuations, but whereas the static effect (Casimir force) has long been observed experimentally, the dynamic Casimir effect is up to now undetected. From an experimental viewpoint a possible detection would imply the vibration of a mirror at gigahertz frequencies. Mechanical motions at such frequencies turn out to be technically unfeasible. Here we present a different experimental scheme where me...