March 26, 2010
The author summarizes the Quantum Bayesian viewpoint of quantum mechanics, developed originally by C. M. Caves, R. Schack, and himself. It is a view crucially dependent upon the tools of quantum information theory. Work at the Perimeter Institute for Theoretical Physics continues the development and is focused on the hard technical problem of a finding a good representation of quantum mechanics purely in terms of probabilities, without amplitudes or Hilbert-space operators. T...
October 31, 2007
The concept of probability was prominent in the original foundations of quantum mechanics, and continues to be so today. Indeed, the controversies regarding objective and subjective interpretations of probability have again become active. I argue that, although both objective and subjective probabilities have domains of relevance in QM, their roles are quite distinct. Even where both are legitimate, the objective and subjective probabilities differ, both conceptually and nume...
June 24, 2015
In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical ac...
January 3, 2005
We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.
March 5, 2014
Quantum Bayesianism, or QBism, is a recent development of the epistemic view of quantum states, according to which the state vector represents knowledge about a quantum system, rather than the true state of the system. QBism explicitly adopts the subjective view of probability, wherein probability assignments express an agent's personal degrees of belief about an event. QBists claim that most if not all conceptual problems of quantum mechanics vanish if we simply take a prope...
July 26, 2003
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and ...
September 2, 2014
According to quantum mechanics, statements about the future made by sentient beings like us are, in general, neither true nor false; they must satisfy a many-valued logic. I propose that the truth value of such a statement should be identified with the probability that the event it describes will occur. After reviewing the history of related ideas in logic, I argue that it gives an understanding of probability which is particularly satisfactory for use in quantum mechanics. I...
October 29, 2001
Probability theory can be modified in essentially one way while maintaining consistency with the basic Bayesian framework. This modification results in copies of standard probability theory for real, complex or quaternion probabilities. These copies, in turn, allow one to derive quantum theory while restoring standard probability theory in the classical limit. The argument leading to these three copies constrain physical theories in the same sense that Cox's original argument...
December 25, 2019
QBism is a recently developed version of Quantum Bayesianism. QBists think that the primitive concept of experience is the central subject of science. QBism refuses the idea that the quantum state of a system is an objective description of this system. It is a tool for assigning a subjective probability to the agent's future experience. So quantum mechanics does not directly say something about the "external world". A measurement (in the usual sense) is just a special case of...
August 18, 2002
We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in su...