August 12, 2004
The notion of distinguishability between quantum states has shown to be fundamental in the frame of quantum information theory. In this paper we present a new distinguishability criterium by using a information theoretic quantity: the Jensen-Shannon divergence (JSD). This quantity has several interesting properties, both from a conceptual and a formal point of view. Previous to define this distinguishability criterium, we review some of the most frequently used distances defined over quantum mechanics' Hilbert space. In this point our main claim is that the JSD can be taken as a unifying distance between quantum states.
Similar papers 1
August 18, 2005
We discuss an alternative to relative entropy as a measure of distance between mixed quantum states. The proposed quantity is an extension to the realm of quantum theory of the Jensen-Shannon divergence (JSD) between probability distributions. The JSD has several interesting properties. It arises in information theory and, unlike the Kullback-Leibler divergence, it is symmetric, always well defined and bounded. We show that the quantum JSD (QJSD) shares with the relative entr...
July 19, 2004
We discuss different statistical distances in probability space, with emphasis on the Jensen-Shannon divergence, vis-a-vis {\it metrics} in Hilbert space and their relationship with Fisher's information measure. This study provides further reconfirmation of Wootters' hypothesis concerning the possibility that statistical fluctuations in the outcomes of measurements be regarded (at least partly) as responsible for the Hilbert-space structure of quantum mechanics.
April 23, 2008
The notion of distance in Hilbert space is relevant in many scenarios. In particular, distances between quantum states play a central role in quantum information theory. An appropriate measure of distance is the quantum Jensen Shannon divergence (QJSD) between quantum states. Here we study this distance as a geometrical measure of entanglement and apply it to different families of states.
January 10, 2008
In a recent paper, the generalization of the Jensen Shannon divergence (JSD) in the context of quantum theory has been studied (Phys. Rev. A 72, 052310 (2005)). This distance between quantum states has shown to verify several of the properties required for a good distinguishability measure. Here we investigate the metric character of this distance. More precisely we show, formally for pure states and by means of simulations for mixed states, that its square root verifies the ...
December 18, 1997
This paper, mostly expository in nature, surveys four measures of distinguishability for quantum-mechanical states. This is done from the point of view of the cryptographer with a particular eye on applications in quantum cryptography. Each of the measures considered is rooted in an analogous classical measure of distinguishability for probability distributions: namely, the probability of an identification error, the Kolmogorov distance, the Bhattacharyya coefficient, and the...
June 27, 2008
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha is the square of ...
July 14, 2014
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The art...
January 23, 1996
This document focuses on translating various information-theoretic measures of distinguishability for probability distributions into measures of distin- guishability for quantum states. These measures should have important appli- cations in quantum cryptography and quantum computation theory. The results reported include the following. An exact expression for the quantum fidelity between two mixed states is derived. The optimal measurement that gives rise to it is studied in ...
April 22, 2013
In this paper we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by L. Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, a...
July 9, 2017
Quantum state discrimination underlies various applications in quantum information processing tasks. It essentially describes the distinguishability of quantum systems in different states, and the general process of extracting classical information from quantum systems. It is also useful in quantum information applications, such as the characterisation of mutual information in cryptographic protocols, or as a technique to derive fundamental theorems in quantum foundations. It...