September 19, 2004
Similar papers 3
February 27, 2003
Decoherence is the main obstacle to the realization of quantum computers. Until recently it was thought that quantum error correcting codes are the only complete solution to the decoherence problem. Here we present an alternative that is based on a combination of a decoherence-free subspace encoding and the application of strong and fast pulses: ``encoded recoupling and decoupling'' (ERD). This alternative has the advantage of lower encoding overhead (as few as two physical q...
April 16, 2009
Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to th...
July 18, 2012
Singular Value Decomposition (SVD) is one of the most useful techniques for analyzing data in linear algebra. SVD decomposes a rectangular real or complex matrix into two orthogonal matrices and one diagonal matrix. In this work we introduce a new approach to improve the preciseness of the standard Quantum Fourier Transform. The presented Quantum-SVD algorithm is based on the singular value decomposition mechanism. While the complexity of the proposed scheme is the same as th...
April 10, 2003
We demonstrate that two recent innovations in the field of practical quantum key distribution (one-way autocompensation and passive detection) are closely related to the methods developed to protect quantum computations from decoherence. We present a new scheme that combines these advantages, and propose a practical implementation of this scheme that is feasible using existing technology.
April 18, 2024
Quantum key distribution (QKD) and quantum message encryption protocols promise a secure way to distribute information while detecting eavesdropping. However, current protocols may suffer from significantly reduced eavesdropping protection when only a subset of qubits are observed by an attacker. In this paper, we present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT) and show their higher effectiveness even when an attacker measures only a...
June 20, 2012
Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the sys...
February 17, 2022
Quantum technologies have shown immeasurable potential to effectively solve several information processing tasks such as prime number factorization, unstructured database search or complex macromolecule simulation. As a result of such capability to solve certain problems that are not classically tractable, quantum machines have the potential revolutionize the modern world via applications such as drug design, process optimization, unbreakable communications or machine learnin...
August 15, 2020
We demonstrate that quantum information processing (QIP) completely rests on quantum Fourier transform (QFT), and 190 years after his death, the work of Jean-Baptiste Joseph Fourier is more present than ever in Physics, constituting the heart of QIP, and showing the spectral nature of quantum entanglement, quantum teleportation, and quantum secret sharing.
March 22, 1997
A scheme is proposed for protecting quantum states from both independent decoherence and cooperative decoherence. The scheme operates by pairing each qubit (two-state quantum system) with an ancilla qubit and by encoding the states of the qubits into the corresponding coherence-preserving states of the qubit-pairs. In this scheme, the amplitude damping (loss of energy) is prevented as well as the phase damping (dephasing) by a strategy called the free-Hamiltonian-elimination ...
September 18, 1999
A general scheme to perform universal quantum computation within decoherence-free subspaces (DFSs) of a system's Hilbert space is presented. This scheme leads to the first fault-tolerant realization of universal quantum computation on DFSs with the properties that (i) only one- and two-qubit interactions are required, and (ii) the system remains within the DFS throughout the entire implementation of a quantum gate. We show explicitly how to perform universal computation on cl...