January 28, 2005
Similar papers 2
July 23, 1999
A brief review of the recent experimental verifications of the Casimir force between extended bodies is presented. With modern techniques, it now appears feasible to test the force law with 1% precision; I will address the issues relating to the interpretation of experiments at this level of accuracy
June 8, 2001
We provide a review of both new experimental and theoretical developments in the Casimir effect. The Casimir effect results from the alteration by the boundaries of the zero-point electromagnetic energy. Unique to the Casimir force is its strong dependence on shape, switching from attractive to repulsive as function of the size, geometry and topology of the boundary. Thus the Casimir force is a direct manifestation of the boundary dependence of quantum vacuum. We discuss in...
October 10, 2014
The present notes are organized as the lectures given at the Les Houches Summer School "Quantum Optics and Nanophotonics" in August 2013. The first section contains an introduction and a description of the current state-of-the-art for Casimir force measurements and their comparison with theory. The second and third sections are a pedagogical presentation of the main features of the theory of Casimir forces for 1-dimensional model systems and for mirrors in 3-dimensional space...
June 2, 2004
The phenomena implied by the existence of quantum vacuum fluctuations, grouped under the title of the Casimir effect, are reviewed, with emphasis on new results discovered in the past four years. The Casimir force between parallel plates is rederived as the strong-coupling limit of $\delta$-function potential planes. The role of surface divergences is clarified. A summary of effects relevant to measurements of the Casimir force between real materials is given, starting from a...
June 7, 2004
We present the foundations of a new approach to the Casimir effect based on classical ray optics. We show that a very useful approximation to the Casimir force between arbitrarily shaped smooth conductors can be obtained from knowledge of the paths of light rays that originate at points between these bodies and close on themselves. Although an approximation, the optical method is exact for flat bodies, and is surprisingly accurate and versatile. In this paper we present a sel...
September 15, 2008
In this talk I review various developments in the past year concerning quantum vacuum energy, the Casimir effect. In particular, there has been continuing controversy surrounding the temperature correction to the Lifshitz formula for the Casimir force between real materials, be they metals or semiconductors. Consensus has emerged as to how Casimir energy accelerates in a weak gravitational field; quantum vacuum energy, including the divergent parts which renormalize the masse...
May 1, 2001
In his autobiography Casimir barely mentioned the Casimir effect, but remarked that it is "of some theortical significance." We will describe some aspects of Casimir effects that appear to be of particular significance now, more than half a century after Casimir's famous paper.
November 9, 2022
Recent measurements of Casimir forces have provided evidence of an intricate modification of quantum fluctuations of the electromagnetic field in complex geometries. Here we introduce a multiple scattering description for Casimir interactions between bodies of arbitrary shape and material composition, admitting an expansion as a sequence of inter- and intra-body wave scatterings. Interactions in complex geometries can be computed within the current experimental resolution fro...
October 27, 2005
Although Casimir, or quantum vacuum, forces between distinct bodies, or self-stresses of individual bodies, have been calculated by a variety of different methods since 1948, they have always been plagued by divergences. Some of these divergences are associated with the volume, and so may be more or less unambiguously removed, while other divergences are associated with the surface. The interpretation of these has been quite controversial. Particularly mysterious is the contr...
January 28, 2009
This article reviews recent progress on the geometry dependence of Casimir interactions and presents some applications to nanosystems. The article consists of three parts: (i) Some examples for geometry dependence: structured surfaces, cylinders, and spheres. (ii) Material dependence: Casimir interaction between nano-spheres. (iii) Casimir force induced non-linear dynamics, ratchet effects.