December 8, 1999
We present a setup for quantum secret sharing using pseudo-GHZ states based on energy-time entanglement. In opposition to true GHZ states, our states do not enable GHZ-type tests of nonlocality, however, they bare the same quantum correlations. The relatively high coincidence count rates found in our setup enable for the first time an application of a quantum communication protocoll based on more than two qubits.
July 4, 2023
This paper introduces two information-theoretically secure protocols that achieve quantum secure direct communication between Alice and Bob in the first case, and among Alice, Bod and Charlie in the second case. Both protocols use the same novel method to embed the secret information in the entangled composite system of the players. The way of encoding the information is the main novelty of this paper and the distinguishing feature compared to previous works in the field. The...
October 27, 2005
In this paper, we present an (n, n) threshold quantum secret sharing scheme of secure direct communication using Greenberger-Horne-Zeilinger state. The present scheme is efficient in that all the Greenberger-Horne-Zeilinger states used in the quantum secret sharing scheme are used to generate shared secret messages except those chosen for checking eavesdropper. In our scheme, the measuring basis of communication parties is invariable and the classical information used to chec...
October 13, 2006
Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-part...
April 15, 2005
In this Letter, we present quantum secret sharing and secret splitting protocols with single photons running forth and back between the participating parties. The protocol has a high intrinsic efficiency, namely all photons except those chosen for eavesdropping check could be used for sharing secret. The participants need not to announce the measuring bases at most of the time and this reduces the classical information exchanged largely.
May 18, 2023
Quantum secret sharing plays an important role in quantum communications and secure multiparty computation. In this paper, we present a new measurement-device-independent quantum secret sharing protocol, which can double the space distance between the dealer and each sharer for quantum transmission compared with prior works. Furthermore, it is experimentally feasible with current technology for requiring just three-particle Greenberger-Horne-Zeilinger states and Bell state me...
September 5, 2005
We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement resul...
August 1, 2016
Quantum information science breaks limitations of conventional information transfer, cryptography and computation by using quantum superpositions or entanglement as resources for information processing. Here, we report on the experimental realization of three-party quantum communication protocols using single three-level quantum system (qutrit) communication: secret sharing, detectable Byzantine agreement, and communication complexity reduction for a three-valued function. We...
December 31, 2016
Secret sharing, in which a dealer wants to split a secret in such a way that any unauthorized subset of parties is unable to reconstruct it, plays a key role in cryptography. The security of quantum protocols for the task is guaranteed by the fact that Eve's any strategies to obtain secret information from encoded quantum states should cause a disturbance in the signal. Here, we propose a quantum secret sharing (classical information) scheme for $N$ parties based on totally d...
July 25, 2002
Recent work has shown how to use the laws of quantum mechanics to keep classical and quantum bits secret in a number of different circumstances. Among the examples are private quantum channels, quantum secret sharing and quantum data hiding. In this paper we show that a method for keeping two classical bits hidden in any such scenario can be used to construct a method for keeping one quantum bit hidden, and vice--versa. In the realm of quantum data hiding, this allows us to c...