February 21, 2005
Interactions among qubits are essential for performing two-qubit quantum logic operations. However, nature gives us only nearest neighbor interactions in simple and controllable settings. Here we propose a strategy to induce interactions among two atomic entities that are not necessarily neighbors of each other through their common coupling with a cavity field. This facilitates fast multiqubit quantum logic operations through a set of two-qubit operations. The ideas presented here are applicable to various quantum computing proposals for atom based qubits such as, trapped ions, atoms trapped in optical cavities and optical lattices.
Similar papers 1
April 28, 2000
We propose a scheme for quantum computing using high-Q cavities in which the qubits are represented by single cavity modes restricted in the space spanned by the two lowest Fock states. We show that single qubit operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the cavities.
January 18, 2018
Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate ...
June 19, 2006
A system consisting of two single-mode cavities spatially separated and connected by an optical fiber and multiple two-level atoms trapped in the cavities is considered. If the atoms resonantly and collectively interact with the local cavity fields but there is no direct interaction between the atoms, we show that an ideal quantum state transfer and highly reliable quantum swap, entangling, and controlled-Z gates can be deterministically realized between the distant cavities....
September 16, 2002
We propose a protocol for conditional quantum logic between two 4-state atoms inside a high Q optical cavity. The process detailed in this paper utilizes a direct 4-photon 2-atom resonant process and has the added advantage of commonly addressing the two atoms when they are inside the high Q optical cavity.
March 2, 2012
We propose a scheme for implementing quantum gates for two atoms trapped in distant cavities connected by an optical fiber. The effective long-distance coupling between the two distributed qubits is achieved without excitation and transportation of photons through the optical fiber. Since the cavity modes and fiber mode are never populated and the atoms undergo no transitions, the gate operation is insensitive to the decoherence effect when the thermal photons in the environm...
May 20, 2006
In this letter we present a scheme for generating maximally entangled states of two cavity modes which enables us to generate complete set of Bell basis states having rather simple initial state preparation. Furthermore, we study the interaction of a two-level atom with two modes of electromagnetic field in a high Q cavity. The two-level atom acts as a control qubit and the two mode electromagnetic field serves as a target qubit. This simple system of quantum electrodynamics ...
November 16, 2001
Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.
December 7, 2001
We propose a scheme for implementation of logical gates in a trapped ion inside a high-Q cavity. The ion is simultaneously interacting with a (classical) laser field as well as with the (quantized) cavity field. We demonstrate that simply by tuning the ionic internal levels with the frequencies of the fields, it is possible to construct a controlled-NOT gate in a three step procedure, having the ion's internal as well as motional levels as qubits. The cavity field is used as ...
July 10, 2009
Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of...
January 9, 2004
We propose a scheme for conditional implementation of a quantum phase gate by using distant atoms trapped in different optical cavities. Instead of direct interaction between atoms, the present scheme makes use of quantum interference of polarized photons decaying from the optical cavities to conditionally create the desired quantum phase gate between two distant atoms. The proposed scheme only needs linear optical elements and a two-fold coincidence detection, and are insens...