February 21, 2005
Similar papers 5
April 8, 2004
Quantum information can be processed using large ensembles of ultracold and trapped neutral atoms, building naturally on the techniques developed for high-precision spectroscopy and metrology. This article reviews some of the most important protocols for universal quantum logic with trapped neutrals, as well as the history and state-of-the-art of experimental work to implement these in the laboratory. Some general observations are made concerning the different strategies for ...
February 22, 2023
Qudits with a large Hilbert space to host quantum information are widely utilized in various applications, such as quantum simulation and quantum computation, but the manipulation and scalability of qudits still face challenges. Here, we propose a scheme to directly and locally transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity. With the qubit-qudit interaction, our scheme can transfer quantum states efficiently and ...
August 14, 2012
We propose a way to realize a multiqubit tunable phase gate of one qubit simultaneously controlling n target qubits with atoms in cavity QED. In this proposal, classical pulses interact with atoms outside a cavity only, thus the experimental challenge of applying a pulse to an intra-cavity single atom without affecting other atoms in the same cavity is avoided. Because of employing a first-order large detuning, the gate can be performed fast when compared with the use of a se...
May 13, 2024
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems, yet the exploration of phenomena driven by long-range interactions remains a formidable challenge. Currently available methods utilizing dipolar quantum gases or multi-mode cavities allow to implement long-range interactions with a $1/r^3$ character or with a spatial profile fixed by the mode-structure of the vacuum electromagnetic field surrounding th...
October 14, 2002
A scheme to implement quantum logic gates by manipulating trapped ions through interaction with monochromatic external laser field and quantized cavity field, beyond the Lamb-Dicke regime, is presented. Characteristic times, for implementing ionic state transitions using non-resont laser pulse or quantized cavity field, shows a sharp decline for large Lamb-Dicke parameter value of $\eta_{L}=\eta_{c}=0.2$, and is seen to decrease further with increase in number of initial stat...
November 4, 2014
We propose a simple technique to generate entanglement between distant cavities by using entanglement swapping involving atomic momenta. For the proposed scheme, we have two identical atoms, both initially in their ground state, each incident on far apart cavities with particular initial momenta. The two cavities are prepared initially in superposition of zero and one photon state. First, we interact each atom with a cavity in dispersive way. The interaction results into atom...
April 1, 2003
We propose a method to prepare entangled states and implement quantum computation with atoms in optical cavities. The internal state of the atoms are entangled by a measurement of the phase of light transmitted through the cavity. By repeated measurements an entangled state is created with certainty, and this entanglement can be used to implement gates on qubits which are stored in different internal degrees of freedom of the atoms. This method, based on measurement induced d...
March 30, 2000
This paper proposes a scheme for creating and storing quantum entanglement over long distances. Optical cavities that store this long-distance entanglement in atoms could then function as nodes of a quantum network, in which quantum information is teleported from cavity to cavity. The teleportation can be carried out unconditionally via measurements of all four Bell states, using a method of sequential elimination.
March 17, 2014
We show that the coherent coupling of atomic qubits at distant nodes of a quantum network, composed of several cavities linked by optical fibers, can be arbitrarily controlled via the selective pairing of Raman transitions. The adiabatic elimination of the atomic excited states and photonic states leads to selective qubit-qubit interactions, which would have important applications in quantum information processing. Quantum gates between any pair of distant qubits and parallel...
September 28, 2004
In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.