ID: quant-ph/0504001

Calculation of Hydrogenic Bethe Logarithms for Rydberg States

April 1, 2005

View on ArXiv
Ulrich D. Jentschura, Peter J. Mohr
Quantum Physics

We describe the calculation of hydrogenic (one-loop) Bethe logarithms for all states with principal quantum numbers n <= 200. While, in principle, the calculation of the Bethe logarithm is a rather easy computational problem involving only the nonrelativistic (Schroedinger) theory of the hydrogen atom, certain calculational difficulties affect highly excited states, and in particular states for which the principal quantum number is much larger than the orbital angular momentum quantum number. Two evaluation methods are contrasted. One of these is based on the calculation of the principal value of a specific integral over a virtual photon energy. The other method relies directly on the spectral representation of the Schroedinger-Coulomb propagator. Selected numerical results are presented. The full set of values is available at quant-ph/0504002.

Similar papers 1

Bethe Logarithms for Rydberg States: Numerical Values for n <= 200

April 1, 2005

92% Match
Ulrich D. Jentschura, Peter J. Mohr
Quantum Physics

This document provides reference data for all Bethe logarithms of hydrogenic bound states with principal quantum numbers n <= 200.

Find SimilarView on arXiv

Relativistic and Radiative Energy Shifts for Rydberg States

June 3, 2004

92% Match
U. D. Jentschura, E. -O. Le Bigot, J. Evers, ... , Keitel C. H.
Atomic Physics

We investigate relativistic and quantum electrodynamic effects for highly-excited bound states in hydrogenlike systems (Rydberg states). In particular, hydrogenic one-loop Bethe logarithms are calculated for all circular states (l = n-1) in the range 20 <= n <= 60 and successfully compared to an existing asymptotic expansion for large principal quantum number n. We provide accurate expansions of the Bethe logarithm for large values of n, for S, P and circular Rydberg states. ...

Find SimilarView on arXiv

Two-Loop Bethe Logarithms for non-S Levels

December 29, 2006

91% Match
U. D. Jentschura
Atomic Physics

Two-loop Bethe logarithms are calculated for excited P and D states in hydrogenlike systems, and estimates are presented for all states with higher angular momenta. These results complete our knowledge of the P and D energy levels in hydrogen at the order of alpha^8 m_e c^2, where m_e is the electron mass and c is the speed of light, and scale as Z^6, where Z is the nuclear charge number. Our analytic and numerical calculations are consistent with the complete absence of loga...

Find SimilarView on arXiv

Two-Loop Bethe Logarithms

October 4, 2003

90% Match
Krzysztof Pachucki, Ulrich D. Jentschura
High Energy Physics - Phenom...

We calculate the two-loop Bethe logarithm correction to atomic energy levels in hydrogen-like systems. The two-loop Bethe logarithm is a low-energy quantum electrodynamic (QED) effect involving multiple summations over virtual excited atomic states. Although much smaller in absolute magnitude than the well-known one-loop Bethe logarithm, the two-loop analog is quite significant when compared to the current experimental accuracy of the 1S-2S transition: it contributes -8.19 an...

Find SimilarView on arXiv

A Simple approach for precision calculation of Bethe logarithm

September 13, 2024

89% Match
San-Jiang Yang, Jing Chi, Wan-Ping Zhou, Li-Yan Tang, Zhen-Xiang Zhong, ... , Qiao Hao-Xue
Atomic Physics

In this article we propose a simple approach for the precision calculation of Bethe logarithm. The leading contributions are obtained using specific operators, while the remaining terms are eliminated by adjusting the parameter $\lambda$. Through the use of dimensional regularization, singular divergences are algebraically canceled. Compared to the standard form of Bethe logarithm, our approach significantly reduces the complexity of constructing pseudostates in numerical eva...

Find SimilarView on arXiv

Bethe logarithm for the helium atom

May 20, 2019

89% Match
Vladimir I. Korobov
Atomic Physics

The Bethe logarithm for a large set of states of the helium atom is calculated with a precision of 12-14 significant digits. The numerical data is obtained for the case of infinite mass of a nucleus. Then we study the mass dependence and provide coefficients of the $m_e/M$ expansion, which allows us to calculate accurate values for the Bethe logarithm for any finite mass. An asymptotic expansion for the Rydberg states is analyzed and a high-quality numerical approximation is ...

Find SimilarView on arXiv

Evaluation of the Bethe logarithm: from atom to chemical reaction

August 5, 2022

88% Match
Dávid Ferenc, Edit Mátyus
Chemical Physics

A general computational scheme for the (non-relativistic) Bethe logarithm is developed opening the route to `routine' evaluation of the leading-order quantum electrodynamics correction (QED) relevant for spectroscopic applications for small polyatomic and polyelectronic molecular systems. The implementation relies on Schwartz' method and minimization of a Hylleraas functional. In relation with electronically excited states, a projection technique is considered, which ensures ...

Find SimilarView on arXiv

Atomic Bethe logarithm in the mean-field approximation

September 13, 2023

88% Match
Michał Lesiuk, Jakub Lang
Atomic Physics

In this work we develop and implement a method for calculation of the Bethe logarithm for many-electron atoms. This quantity is required to evaluate the leading-order quantum electrodynamics correction to the energy and properties of atomic and molecular systems beyond the Dirac theory (the Lamb shift). The proposed formalism is based on the mean-field representation of the ground-state electronic wavefunction and of the response functions required in the Schwartz method [C. ...

Find SimilarView on arXiv

Calculation of the relativistic Bethe logarithm in the two-center problem

April 16, 2013

88% Match
Vladimir I. Korobov, Laurent Hilico, Jean-Philippe Karr
Atomic Physics

We present a variational approach to evaluate relativistic corrections of order \alpha^2 to the Bethe logarithm for the ground electronic state of the Coulomb two center problem. That allows to estimate the radiative contribution at m\alpha^7 order in molecular-like three-body systems such as hydrogen molecular ions H_2^+ and HD^+, or antiprotonic helium atoms. While we get 10 significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic correcti...

Find SimilarView on arXiv

Bethe logarithms for the 1 singlet S, 2 singlet S and 2 triplet S states of helium and helium-like ions

February 3, 2000

87% Match
Jonathan D. NIST Baker, Robert C. Penn State University Forrey, ... , Morgan John D. III University of Delaware
Atomic Physics

We have computed the Bethe logarithms for the 1 singlet S, 2 singlet S and 2 triplet S states of the helium atom to about seven figure-accuracy using a generalization of a method first developed by Charles Schwartz. We have also calculated the Bethe logarithms for the helium-like ions of Li, Be, O and S for all three states to study the 1/Z behavior of the results. The Bethe logarithm of H minus was also calculated with somewhat less accuracy. The use of our Bethe logarithms ...

Find SimilarView on arXiv