August 29, 2005
The main achievements of Pseudo-Hermitian Quantum Mechanics and its distinction with the indefinite-metric quantum theories are reviewed. The issue of the non-uniqueness of the metric operator and its consequences for defining the observables are discussed. A systematic perturbative expression for the most general metric operator is offered and its application for a toy model is outlined.
Similar papers 1
August 5, 2003
With a view to eliminate an important misconception in some recent publications, we give a brief review of the notion of a pseudo-Hermitian operator, outline pseudo-Hermitian quantum mechanics, and discuss its basic difference with the indefinite-metric quantum mechanics. In particular, we show that the answer to the question posed in the title is a definite No.
August 29, 2007
We provide a careful analysis of the generating functional in the path integral formulation of pseudo-Hermitian and in particular PT-symmetric quantum mechanics and show how the metric operator enters the expression for the generating functional.
May 9, 2013
To develop a unitary quantum theory with probabilistic description for pseudo- Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There are different approaches to find such metric operators. We compare the different approaches of calculating pos- itive definite metric operators in pseudo-Hermitian theories with the help of several explicit examples in non-relativistic as well as in relativistic ...
August 26, 2005
We present a systematic perturbative construction of the most general metric operator (and positive-definite inner product) for quasi-Hermitian Hamiltonians of the standard form, H= p^2/2 + v(x), in one dimension. We show that this problem is equivalent to solving an infinite system of iteratively decoupled hyperbolic partial differential equations in (1+1)-dimensions. For the case that v(x) is purely imaginary, the latter have the form of a nonhomogeneous wave equation which...
October 31, 2008
A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to define a unitary quantum system, if one modifies the inner product of the Hilbert space properly. We give a comprehensive and essentially self-contained review of the basic ideas and techniques responsible for the recent developments in this subject. We provide a critical assessment of the role of the geometry of the Hilbert space in conventional quantum mechanics to reveal the basic physical pri...
August 27, 2010
We survey some of the main conceptual developments in the study of PT-symmetric and pseudo-Hermitian Hamiltonian operators that have taken place during the past ten years or so. We offer a precise mathematical description of a quantum system and its representations that allows us to describe the idea of unitarization of a quantum system by modifying the inner product of the Hilbert space. We discuss the role and importance of the quantum-to-classical correspondence principle ...
October 6, 2011
An extension of the scope of quantum theory is proposed in a way inspired by the recent heuristic as well as phenomenological success of the use of non-Hermitian Hamiltonians which are merely required self-adjoint in a Krein space with an indefinite metric (chosen, usually, as the operator of parity). In nuce, the parity-like operators are admitted to represent the mere indefinite metric in a Pontryagin space. A constructive version of such a generalized quantization strategy...
June 21, 2006
Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schroedinger equation, we comment on some conceptual issues arising in the formulation of PT-symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the CPT-inner product that wa...
November 14, 2006
The harmonic oscillator Hamiltonian, when augmented by a non-Hermitian $\cal{PT}$-symmetric part, can be transformed into a Hermitian Hamiltonian. This is achieved by introducing a metric which, in general, renders other observables such as the usual momentum or position as non-Hermitian operators. The metric depends on one real parameter, the full range of which is investigated. The explicit functional dependence of the metric and each associated Hamiltonian is given. A spec...
August 20, 2004
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables O of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian quantization scheme that relates the latter to the ordinary classical position and mo...