October 19, 2005
Similar papers 3
April 12, 2024
In this paper we address the relation between the star exponentials emerging within the Deformation Quantization formalism and Feynman's path integrals associated with propagators in quantum dynamics. In order to obtain such a relation, we start by visualizing the quantum propagator as an integral transform of the star exponential by means of the symbol corresponding to the time evolution operator and, thus, we introduce Feynman's path integral representation of the propagato...
September 6, 1993
A star-product formalism describing deformations of the standard quantum mechanical harmonic oscillator is introduced. A number of existing generalized oscillators occur as particular choises of star-products between the elements of the ordinary oscillator algebra. Star dynamics and coherent states are introduced and studied.
February 13, 2019
A recent paper [J. Math. Phys. {\bf 59}, 082105 (2018)] constructs a Hamiltonian for the (dissipative) damped harmonic oscillator. We point out that non-Hermiticity of this Hamiltonian has been ignored to find real discrete eigenvalues which are actually non-real. We emphasize that non-Hermiticity in Hamiltonian is crucial and it is a quantal signature of dissipation.
February 26, 2015
In this paper we introduce the concept of Hamiltonian system in the canonical and Poisson settings. We will discuss the quantization of the Hamiltonian systems in the Poisson context, using formal deformation quantization and quantum group theories.
February 17, 2006
In the framework of the Lindblad theory for open quantum systems the damping of the harmonic oscillator is studied. A generalization of the fundamental constraints on quantum mechanical diffusion coefficients which appear in the master equation for the damped quantum oscillator is presented; the Schr\"odinger and Heisenberg representations of the Lindblad equation are given explicitly. On the basis of these representations it is shown that various master equations for the dam...
May 5, 2009
We consider several models of the damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the dynamics of the time-dependent Schroedinger equation with variable quadratic Hamiltonians. The Green functions are explicitly found in terms of elementary functions and the corresponding gauge transformations are discussed. The factorization technique is applied to the case of a shifted harmonic oscillator. The time-evolution of the expectation...
October 26, 2012
This work addresses the study of the oscillator algebra, defined by four parameters $p$, $q$, $\alpha$, and $\nu$. The time-independent Schr\"{o}dinger equation for the induced deformed harmonic oscillator is solved; explicit analytic expressions of the energy spectrum are given. Deformed states are built and discussed with respect to the criteria of coherent state construction. Various commutators involving annihilation and creation operators and their combinatorics are co...
March 18, 2007
A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model by using perturbation theory. The coefficients of the master equation and of equations of motion for observables depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harm...
June 20, 2020
In this paper, it is proposed a quantization procedure for the one-dimensional harmonic oscillator with time-dependent frequency, time-dependent driven force, and time-dependent dissipative term. The method is based on the construction of dynamical invariants previously proposed by the authors, in which fundamental importance is given to the linear invariants of the oscillator.
June 9, 2003
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions which enables us to turn the maximally degenerate Poisson brackets into operators. They...