January 17, 2006
Similar papers 5
April 9, 2021
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, ...
May 11, 2001
The existence of irreducible field fluctuations in vacuum is an important prediction of quantum theory. These fluctuations have many observable consequences, like the Casimir effect which is now measured with good accuracy and agreement with theory, provided that the latter accounts for differences between real experiments and the ideal situation considered by Casimir. But the vacuum energy density calculated by adding field mode energies is much larger than the density obser...
August 10, 2015
A meaningful probability distribution for measurements of a quantum stress tensor operator can only be obtained if the operator is averaged in time or in spacetime. This averaging can be regarded as a description of the measurement process. Realistic measurements can be expected to begin and end at finite times, which means that they are described by functions with compact support, which we will also take to be smooth. Here we study the probability distributions for stress te...
May 21, 2024
A precise interpretation of the Universe wave function is forbidden in the spirit of the Copenhagen School since a precise notion of measure operation cannot be satisfactorily defined. Here we propose a Bohmian interpretation of the isotropic Universe quantum dynamics, in which the Hamilton-Jacobi equation is restated by including quantum corrections, which lead to a classical trajectory containing effects of order $\hbar^2$. This solution is then used to determine the spectr...
October 14, 2015
We investigate the quantumness of primordial cosmological fluctuations and its detectability. The quantum discord of inflationary perturbations is calculated for an arbitrary splitting of the system, and shown to be very large on super-Hubble scales. This entails the presence of large quantum correlations, due to the entangled production of particles with opposite momentums during inflation. To determine how this is reflected at the observational level, we study whether quant...
February 16, 2019
We introduce probability thermodynamics and probability quantum fields. By probability we mean that there is an unknown operator, physical or nonphysical, whose eigenvalues obey a certain statistical distribution. Eigenvalue spectra define spectral functions. Various thermodynamic quantities in thermodynamics and effective actions in quantum field theory are all spectral functions. In the scheme, eigenvalues obey a probability distribution, so a probability distribution deter...
May 16, 2004
It is commonly assumed that quantum field theory arises by applying ordinary quantum mechanics to the low energy effective degrees of freedom of a more fundamental theory defined at ultra-high-energy/short-wavelength scales. We shall argue here that, even for free quantum fields, there are holistic aspects of quantum field theory that cannot be properly understood in this manner. Specifically, the ``subtractions'' needed to define nonlinear polynomial functions of a free quan...
February 1, 2021
This thesis is dedicated to studying cosmological inflation, which is a period of accelerated expansion in the very early Universe that is required to explain the observed anisotropies in the cosmic microwave background. Inflation, when combined with quantum mechanics, also provides the over-densities that grow into the structure of the modern Universe. Understanding perturbations during this period of inflation is important, and we study these perturbations in detail in this...
October 27, 2010
Cosmological inflation generates a spectrum of density perturbations that can seed the cosmic structures we observe today. These perturbations are usually computed as the result of the gravitationally-induced spontaneous creation of perturbations from an initial vacuum state. In this paper, we compute the perturbations arising from gravitationally-induced stimulated creation when perturbations are already present in the initial state. The effect of these initial perturbations...
February 21, 2013
The derivation of the angular spectrum of temperature perturbations of the cosmic microwave background relies on the quantization of field and metric perturbations in the inflationary phase. The quantization procedure thus deserves a close examination. As the background spacetime on which the degrees of freedom that are quantized live is curved, the methods of quantum field theory in curved spacetimes are applicable. Furthermore the dynamic system that is quantized contains a...