February 20, 2006
Similar papers 4
June 12, 2009
We introduce a scheme for secure multi-party computation utilising the quantum correlations of entangled states. First we present a scheme for two-party computation, exploiting the correlations of a Greenberger-Horne-Zeilinger state to provide, with the help of a third party, a near-private computation scheme. We then present a variation of this scheme which is passively secure with threshold t=2, in other words, remaining secure when pairs of players conspire together provid...
February 3, 2017
We propose a way for transferring Greenberger-Horne-Zeilinger (GHZ) entangled states from $n$ qubits in one cavity onto another $n$ qubits in the other cavity. It is shown that $n$-qubit GHZ states $\alpha \left\vert 00...0\right\rangle +\beta \left\vert 11...1\right\rangle $ with arbitrary degree of entanglement can be transferred deterministically. Both of the GHZ state transfer and the operation time are not dependent on the number of qubits, and there is no need of measur...
April 17, 2014
A highly entangled bipartite quantum state is more advantageous for the quantum dense coding protocol than states with low entanglement. Such a correspondence, however, does not exist even for pure quantum states in the multipartite domain. We establish a connection between the multiparty capacity of classical information transmission in quantum dense coding and several multipartite quantum correlation measures of the shared state, used in the dense coding protocol. In partic...
October 9, 2020
Conference Key Agreement (CKA) is a cryptographic effort of multiple parties to establish a shared secret key. In future quantum networks, generating secret keys in an anonymous way is of tremendous importance for parties that want to keep their shared key secret and at the same time protect their own identity. We provide a definition of anonymity for general protocols and present a CKA protocol that is provably anonymous under realistic adversarial scenarios. We base our pro...
September 1, 2018
We propose an alignment-free two-party polarization-entanglement transmission scheme for entangled photons by using only linear-optical elements, requiring neither ancillary photons nor calibrated reference frames. The scheme is robust against both the random channel noise and the instability of reference frames, and it is subsequently extended to multi-party Greenberger-Horne-Zeilinger state transmission. Furthermore, the success probabilities for two- and multi-party entang...
April 30, 2008
In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, and hence the states could be distillable into the Greenberger-Horne-Zeilinger state. We finally exhibit a class of secret-sharing states, which have an arbitrarily small amount of bipartite distillable entanglement for a certain s...
August 1, 2009
We propose genuine ($k$, $m$)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of $m$ supervisors such that $k$ ($k\leq m$) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. ...
September 25, 2024
Quantum entanglement serves as a foundational resource for various quantum technologies. In optical systems, entanglement distribution rely on the indistinguishability and spatial overlap of photons. Heralded schemes play a crucial role in ensuring the reliability of entanglement generation by detecting ancillary photons to signal the creation of desired entangled states. However, photon losses in quantum channels remain a significant challenge, limiting the distance and capa...
May 11, 2006
In a recent comment, it has been shown that in a quantum secret sharing protocol proposed in [S. Bagherinezhad, V. Karimipour, Phys. Rev. {\bf A}, 67, 044302, (2003)], one of the receivers can cheat by splitting the entanglement of the carrier and intercepting the secret, without being detected. In this reply we show that a simple modification of the protocol prevents the receivers from this kind of cheating.
June 13, 2004
We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series local operations on their respective particles according to the tripartite stipulation and the secret message ...