June 28, 2006
Similar papers 3
October 11, 2023
Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane to minimize the disturbance to the pseudopotential. However, this method introduces issues related to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown...
March 28, 2011
We describe the advantages of 2-dimensional, addressable arrays of spherical Paul traps. They would provide for the ability to address and tailor the interaction strengths of trapped objects in 2D and could establish a valuable new tool for quantum information processing. Simulations of trapping ions are compared to first tests using printed circuit board trap arrays loaded with dust particles. Pair-wise interactions in the array are addressed by means of an adjustable radio-...
January 25, 2005
We investigate a surface-mounted electrode geometry for miniature linear radio frequency Paul ion traps. The electrodes reside in a single plane on a substrate, and the pseudopotential minimum of the trap is located above the substrate at a distance on order of the electrodes' lateral extent or separation. This architecture provides the possibility to apply standard microfabrication principles to the construction of multiplexed ion traps, which may be of particular importance...
February 23, 2018
There is recent interest in determining energy costs of shortcuts to adiabaticity (STA), but different definitions of "cost" have been used. We demonstrate the importance of taking into account the Control System (CS) for a fair assessment of energy flows and consumptions. We model the energy consumption and power to transport an ion by a STA protocol in a multisegmented Paul trap. The ion is driven by an externally controlled, moving harmonic oscillator. Even if no net ion- ...
May 15, 2002
We have investigated ion dynamics associated with a dual linear ion trap where ions can be stored in and moved between two distinct locations. Such a trap is a building block for a system to engineer arbitrary quantum states of ion ensembles. Specifically, this trap is the unit cell in a strategy for scalable quantum computing using a series of interconnected ion traps. We have transferred an ion between trap locations 1.2 mm apart in 50 $\mu$s with near unit efficiency ($> 1...
December 15, 1998
A new scheme for the individual addressing of ions in a trap is described that does not rely on light beams tightly focused onto only one ion. The scheme utilizes ion micromotion that may be induced in a linear trap by dc offset potentials. Thus coupling an individual ion to the globally applied light fields corresponds to a mere switching of voltages on a suitable set of compensation electrodes. The proposed scheme is especially suitable for miniaturized rf (Paul) traps with...
March 1, 2014
We theoretically investigate the process of splitting two-ion crystals in segmented Paul traps, i.e. the structural transition from two ions confined in a common well to ions confined in separate wells. The precise control of this process by application of suitable voltage ramps to the trap segments is non-trivial, as the harmonic confinement transiently vanishes during the process. This makes the ions strongly susceptible to background electric field noise, and to static off...
March 11, 2014
Efficient transport of cold atoms or ions is a subject of increasing concern in many experimental applications reaching from quantum information processing to frequency metrology. For the scalable quantum computer architectures based on the shuttling of individual ions, different transport schemes have been developed, which allow to move single atoms minimizing their energy gain. In this article we discuss the experimental implementation of the transport of a three-dimensiona...
October 31, 2024
Trapped ions are among the most advanced platforms for quantum simulation and computation. Their capabilities can be further augmented by making use of electronically highly excited Rydberg states, which enable the realization of long-ranged electric dipolar interactions. Most experimental and theoretical studies so far focus on the excitation of ionic Rydberg states in linear Paul traps, which generate confinement by a combination of static and oscillating electric fields. T...
August 4, 2007
This work is devoted to the investigation of possibility of controlling of ions motion inside Paul trap. It has been shown that by proper selection of the parameters of controlling electric fields, stable localization of ions inside Paul trap is possible. Quantum consideration of this problem is reduced to the investigation of the Mathieu-Schrodinger equation. It has been shown that quantum consideration is appreciably different from classical one that leads to stronger limit...