August 11, 2006
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which for example model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing.
Similar papers 1
February 17, 2012
We theoretically evaluate establishing remote entanglement between distinguishable matter qubits through interference and detection of two emitted photons. The fidelity of the entanglement operation is analyzed as a function of the temporal and frequency mode-matching between the photons emitted from each quantum memory. With a general analysis, we define limits on the absolute magnitudes of temporal and frequency mode-mismatches in order to maintain entanglement fidelities g...
March 14, 2008
Quantum repeaters promise to deliver long-distance entanglement overcoming noise and loss in realistic quantum channels. A promising class of repeaters, based on atomic ensemble quantum memories and linear optics, follow the proposal by Duan et al [Nature 414, 413, 2001]. Here we analyse this protocol in terms of a very general model for the quantum memories employed. We derive analytical expressions for scaling of entanglement with memory imperfections, dark counts, loss and...
April 19, 2023
Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories can effectively store and manipulate quantum states, which makes them indispensable elements in future long-distance quantum networks. Over the past two decades, quant...
October 15, 2010
Given two quantum memories for continuous variables (e.g., the collective pseudo-spin of two atomic ensembles) and the possibility to perform passive optical operations (typically beam-splitters) on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed...
July 1, 2008
It has recently been discovered that the optical analogue of a gradient echo in an optically thick material could form the basis of a optical memory that is both completely efficient and noise free. Here we present analytical calculation showing this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memor...
April 30, 2021
In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electromagnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform joint Bell-state measurement (BSM). Quantum state for each photon is chosen based on a qu...
June 27, 2012
We describe a simple entangling principle based on the scattering of photons off single emitters in one-dimensional waveguides (or extremely-lossy cavities). The scheme can be applied to photonic qubits encoded in polarization or time-bin, and features a filtering mechanism that works effectively as a built-in error-correction directive. This automatically maps imperfections from weak couplings, atomic decay into undesired modes, frequency mismatches, or finite bandwidths of ...
December 11, 2017
The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient light-matter interface remains an outstanding challenge. In fact, the coherence times of memories for photonic qubits are currently limited to a few milliseconds. Here we report on a qubit memory based on a single atom coupled to ...
January 30, 2024
Ideal photonic quantum memories can store arbitrary pulses of light with unit efficiency. This requires operating in the adiabatic regime, where pulses have a duration much longer than the bandwidth of the memory. In the non-adiabatic regime of short pulses, memories are therefore imperfect, and information is always lost. We theoretically investigate the bandwidth limitations for setups based on individual atoms, or ensembles thereof, confined inside optical cavities. We ide...
June 4, 2007
Heralded entanglement between collective excitations in two atomic ensembles is probabilistically generated, stored, and converted to single photon fields. By way of the concurrence, quantitative characterizations are reported for the scaling behavior of entanglement with excitation probability and for the temporal dynamics of various correlations resulting in the decay of entanglement. A lower bound of the concurrence for the collective atomic state of 0.9\pm 0.3 is inferred...