August 11, 2006
Similar papers 4
November 21, 2014
We propose a Raman quantum memory scheme that uses several atomic ensembles to store and retrieve the multimode highly entangled state of an optical quantum frequency comb, such as the one produced by parametric down-conversion of a pump frequency comb. We analyse the efficiency and the fidelity of such a quantum memory. Results show that our proposal may be helpful to multimode information processing using the different frequency bands of an optical frequency comb.
January 16, 2024
We consider two memory nodes of a quantum network connected by flying qubits. We are particularly interested in the case where a flying qubit produced by one node has to be transformed before it can interface efficiently with the next node. Such transformations can be utilized as a key part of the distribution of quantum states and hence entanglement between the nodes of a hybrid quantum network linking together different quantum technologies. We show how and why the probabil...
October 2, 2012
It has been shown recently (Phys. Rev. Lett. 106, 090504 (2011)) that entangled light with Einstein-Podolsky-Rosen (EPR) correlations retrieves information from digital memory better than any classical light. In identifying this, a model of digital memory with each cell consisting of reflecting medium with two reflectivities (each memory cell encoding the binary numbers 0 or 1) is employed. The readout of binary memory essentially corresponds to discrimination of two Bosonic ...
February 2, 2022
The encoding of classical data in a physical support can be done up to some level of accuracy due to errors and the imperfection of the writing process. Moreover, some degradation of the storage data can happen over the time because of physical or chemical instability of the system. Any read-out strategy should take into account this natural degree of uncertainty and minimize its effect. An example are optical digital memories, where the information is encoded in two values o...
October 27, 2023
Quantum entanglement is the key to quantum communications over considerable distances. The first step for entanglement distribution among quantum communication nodes is to generate link-level Einstein-Podolsky-Rosen (EPR) pairs between adjacent communication nodes. EPR pairs may be continuously generated and stored in a few quantum memories to be ready for utilization by quantum applications. A major challenge is that qubits suffer from unavoidable noise due to their interact...
April 6, 2009
I explore entanglement dynamics in examples of quantum memories, decoherence free subspaces (DFS) and noiseless subsystems (NS), to determine how a complete loss of entanglement affects the ability of these techniques to protect quantum information. Using negativity and concurrence as entanglement measures, I find that in general there is no correlation between the complete loss of entanglement in the system and the fidelity of the stored quantum information. These results co...
March 19, 2014
Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for t...
December 20, 2007
Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralde...
September 29, 2016
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; ...
January 30, 2018
We review a series of quantum memory protocols designed to store the quantum information carried by light into atomic ensembles. In particular, we show how a simple semiclassical formalism allows to gain insight into various memory protocols and to highlight strong analogies between them. These analogies naturally lead to a classification of light storage protocols into two categories, namely photon echo and slow-light memories. We focus on the storage and retrieval dynamics ...