October 12, 2006
Similar papers 3
November 1, 2020
The deep connection between entropy and information is discussed in terms of both classical and quantum physics. The mechanism of information transfer between systems via entanglement is explored in the context of decoherence theory. The concept of entropic time is then introduced on the basis of information acquisition, which is argued to be effectively irreversible and consistent with both the Second Law of Thermodynamics and our psychological perception of time. This is di...
September 2, 1994
We examine consequences of the density matrix approach to quantum theory in the context of a model spacetime containing closed timelike curves and find that in general, an initially pure state will evolve in a nonlinear way to a mixed quantum state. CPT invariance and the implications of this nonlinearity for the statistical interpretation of quantum theory are discussed.
May 13, 2016
Quantum non-local correlations and the acausal, spooky action at a distance suggest a discord between quantum theory and special relativity. We propose a resolution for this discord by first observing that there is a problem of time in quantum theory. There should exist a reformulation of quantum theory which does not refer to classical time. Such a reformulation is obtained by suggesting that space-time is fundamentally non-commutative. Quantum theory without classical time ...
January 8, 1998
This paper shows that ordinary quantum mechanics is not consistent with the superluminal transmission of classical information.
May 7, 2005
The vast majority of the literature dealing with quantum dynamics is concerned with linear evolution of the wave function or the density matrix. A complete dynamical description requires a full understanding of the evolution of measured quantum systems, necessary to explain actual experimental results. The dynamics of such systems is intrinsically nonlinear even at the level of distribution functions, both classically as well as quantum mechanically. Aside from being physical...
June 1, 2023
Quantum measurement is a fundamental concept in the field of quantum mechanics. The action of quantum measurement, leading the superposition state of the measured quantum system into a definite output state, not only reconciles contradictions between quantum and classical mechanics but also facilitates quantum state manipulations, including reading and resetting. Despite its significance, four fundamental issues -- randomness, instantaneousness, irreversibility, and preferred...
April 18, 2017
Correlations between spacelike separated measurements on entangled quantum systems are stronger than any classical correlations and are at the heart of numerous quantum technologies. In practice, however, spacelike separation is often not guaranteed and we typically face situations where measurements have an underlying time order. Here we aim to provide a fair comparison of classical and quantum models of temporal correlations on a single particle, as well as timelike-separat...
February 17, 2010
It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.
December 30, 2024
Nonlinear quantum dynamics is often invoked in models trying to bridge the gap between the quantum micro-world and the classical macro-world. Such endeavors, however, encounter challenges at the nexus with relativity. In 1989 Nicolas Gisin proved a powerful no-go theorem, according to which nonlinear quantum dynamics would lead to superluminal signalling, violating Einstein's causality. Here we analyse the theorem from the perspective of recent developments. First, we observe...
November 19, 1999
We present some informal remarks on aspects of relativistic quantum computing.