May 13, 2002
When a resonance associated with electromagnetically induced transparency (EIT) in an atomic ensemble is modulated by an off-resonant standing light wave, a band of frequencies can appear for which light propagation is forbidden. We show that dynamic control of such a bandgap can be used to coherently convert a propagating light pulse into a stationary excitation with non-vanishing photonic component. This can be accomplished with high efficiency and negligble noise even at a...
August 6, 2015
Stopping and regenerating a pair of single-photon pulses at adjacent locations in coherently prepared Rydberg atomic ensembles are significantly affected by their effective interaction mediated by Rydberg excitations, and the similar processes can differ notably from the one exhibiting the common Rydberg blockade as with the stationary propagation of multi-photon light beams in the same medium. Based on the complete dynamics, we reveal the detailed features in such processes ...
June 1, 2015
Broadband single photons are usually considered not to couple efficiently to atomic gases because of the large mismatch in bandwidth. Contrary to this intuitive picture, here we demonstrate that the interaction of ultrashort single photons with a dense resonant atomic sample deeply modifies the temporal shape of their wavepacket mode without degrading their non-classical character, and effectively generates zero-area single-photon pulses. This is a clear signature of strong t...
February 4, 2015
Tapered optical fibers with a nanofiber waist are versatile tools for interfacing light and matter. In this context, laser-cooled atoms trapped in the evanescent field surrounding the optical nanofiber are of particular interest: They exhibit both long ground-state coherence times and efficient coupling to fiber-guided fields. Here, we demonstrate electromagnetically induced transparency, slow light, and the storage of fiber-guided optical pulses in an ensemble of cold atoms ...
June 26, 2007
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location...
October 16, 2002
We propose a scheme of storing and releasing pulses or cw beams of light in a moving atomic medium illuminated by two stationary and spatially separated control lasers. The method is based on electromagnetically induced transparency (EIT) but in contrast to previous schemes, storage and retrieval of the probe pulse can be achieved at different locations and without switching off the control laser.
February 5, 2015
We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium with an overall efficiency of (10 +/- 0.5) %. Collapses and revivals can be additionally controlled by an appli...
April 6, 2006
We present a universal physical picture for describing storage and retrieval of photon wave packets in a Lambda-type atomic medium. This physical picture encompasses a variety of different approaches to pulse storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via off-resonant Raman fields to photon-echo based techniques. Furthermore, we derive an optimal control strategy for storage and retrieval of a photon wave packet of any ...
August 12, 2022
The stationary light pulse (SLP) refers to a zero-group-velocity optical pulse in an atomic ensemble prepared by two counter-propagating driving fields. Despite the uniqueness of an optical pulse trapped within an atomic medium without a cavity, observations of SLP so far have been limited to trapping a single optical pulse due to the stringent SLP phase-matching condition, and this has severely hindered the development of SLP-based applications. In this paper, we first show ...
July 11, 2012
We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49+/-3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface close to practical quantum information applications.