June 4, 2022
It has been argued since 1948, when it was experimentally demonstrated, that the Casimir effect-where two non-charged conducting plates have a weak but measurable force on each other dependent on the inverse fourth power of the distance between them-shows the reality of vacuum zero-point fluctuations. This "proof" of the reality of vacuum fluctuations has been repeated in many quantum field theory books and papers subsequent to 1948. The attractive force is generally ascribed...
May 26, 2022
We discuss and analyze the properties of Casimir forces acting between nonreciprocal objects in thermal equilibrium. By starting from the fluctuation-dissipation theorem and splitting the force into those arising from individual sources, we show that if all temperatures are equal, the resulting force is reciprocal and is derivable as the gradient of a Casimir (free) energy. While the expression for the free energy is identical to the one for reciprocal objects, there are seve...
January 16, 2001
The Casimir force can be understood as resulting from the radiation pressure exerted by the vacuum fluctuations reflected by boundaries. We extend this local formulation to the case of partially transmitting boundaries by introducing reflectivity and transmittivity coefficients obeying conditions of unitarity, causality and high frequency transparency. We show that the divergences associated with the infiniteness of the vacuum energy do not appear in this approach. We give ex...
October 25, 2002
Vacuum fluctuations have observable consequences, like the Casimir force appearing between two mirrors in vacuum. This force is now measured with good accuracy and agreement with theory. We discuss the meaning and consequences of these statements by emphasizing their relation with the problem of vacuum energy, one of the main unsolved problems at the interface between gravitational and quantum theory.
October 29, 2007
We review the relation between Casimir effect and geometry, emphasizing deviations from the commonly used Proximity Force Approximation (PFA). We use to this aim the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non planar mirrors give rise to non-s...
December 31, 2003
The Casimir force between dissipative metallic mirrors at non zero temperature has recently given rise to contradictory claims which have raised doubts about the theoretical expression of the force. In order to contribute to the resolution of this difficulty, we come back to the derivation of the force from basic principles of the quantum theory of lossy optical cavities. We obtain an expression which is valid for arbitrary mirrors, including dissipative ones, characterized b...
January 7, 2003
We show that in order to account for the repulsive Casimir effect in the parallel plate geometry in terms of the quantum version of the Lorentz force, virtual surface densities of magnetic charges and currents must be introduced. The quantum version of the Lorentz force expressed in terms of the correlators of the electric and magnetic fields for planar geometries yields then correctly the Casimir pressure.
October 10, 2014
The present notes are organized as the lectures given at the Les Houches Summer School "Quantum Optics and Nanophotonics" in August 2013. The first section contains an introduction and a description of the current state-of-the-art for Casimir force measurements and their comparison with theory. The second and third sections are a pedagogical presentation of the main features of the theory of Casimir forces for 1-dimensional model systems and for mirrors in 3-dimensional space...
January 19, 2001
We develop a mathematically precise framework for the Casimir effect. Our working hypothesis, verified in the case of parallel plates, is that only the regularization-independent Ramanujan sum of a given asymptotic series contributes to the Casimir pressure. As an illustration, we treat two cases: parallel plates, identifying a previous cutoff free version (by G. Scharf and W. W.) as a special case, and the sphere.We finally discuss the open problem of the Casimir force for t...
December 20, 2006
We start this paper with a historical survey of the Casimir effect, showing that its origin is related to experiments on colloidal chemistry. We present two methods of computing Casimir forces, namely: the global method introduced by Casimir, based on the idea of zero-point energy of the quantum electromagnetic field, and a local one, which requires the computation of the energy-momentum stress tensor of the corresponding field. As explicit examples, we calculate the (standar...