May 30, 2018
This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case.
October 29, 1996
We point out formal correspondences between thermodynamics and entanglement. By applying them to previous work, we show that entropy of entanglement is the unique measure of entanglement for pure states.
January 27, 2015
Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [Lieb, Yngvason, Proc. Roy. Soc.(2013)]. In particular, we obtain a direct relation between the Clausius entropy a...
January 14, 2002
Classical and quantum information theory are simply explained. To be more specific it is clarified why Shannon entropy is used as measure of classical information and after a brief review of quantum mechanics it is possible to demonstrate why the density matrix is the main tool of quantum information theory. Then von Neumann entropy is introduced and with its help a great difference between classical and quantum information theory is presented: quantum entanglement. Moreover ...
November 12, 2003
Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract mor...
December 10, 2018
Quantum coherence is the most distinguished signature of quantum mechanics, also recognized to be an essential resource for many promising quantum technologies, playing a central role in phenomena related to quantum information science, quantum thermodynamics and quantum biology, just to mention few examples. However, the resource theory of coherence is in the preliminary stage of its development, being still limited to the study of the manipulation and quantification of cohe...
March 29, 2021
Quantum measurement is ultimately a physical process, resulting from an interaction between the measured system and a measuring apparatus. Considering the physical process of measurement within a thermodynamic context naturally raises the following question: How can the work and heat be interpreted? In the present paper we model the measurement process for an arbitrary discrete observable as a measurement scheme. Here the system to be measured is first unitarily coupled with ...
May 10, 2006
Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unitar...
May 29, 1996
We present a quantum information theory that allows for a consistent description of entanglement. It parallels classical (Shannon) information theory but is based entirely on density matrices (rather than probability distributions) for the description of quantum ensembles. We find that quantum conditional entropies can be negative for entangled systems, which leads to a violation of well-known bounds in Shannon information theory. Such a unified information-theoretic descript...
February 25, 2020
In this work we will show that there exists a fundamental difference between microscopic quantum thermodynamics and macroscopic classical thermodynamics. It will be proved that the entropy production in quantum thermodynamics always vanishes for both closed and open quantum thermodynamic systems. This novel and very surprising result is derived based on the genuine reasoning Clausius used to establish the science of thermodynamics in the first place. This result will interest...