September 4, 1996
In this continuation paper we will address the problem of tunneling. We will show how to settle this phenomenon within our classical interpretation. It will be shown that, rigorously speaking, there is no tunnel effect at all.
Similar papers 1
May 31, 2003
A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the qua...
October 31, 2010
Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret qua...
April 26, 2002
This article is a slightly expanded version of the talk I delivered at the Special Plenary Session of the 46-th Annual Meeting of the Israel Physical Society (Technion, Haifa, May 11, 2000) dedicated to Misha Marinov. In the first part I briefly discuss quantum tunneling, a topic which Misha cherished and to which he was repeatedly returning through his career. My task was to show that Misha's work had been deeply woven in the fabric of today's theory. The second part is an a...
July 25, 2005
Beginners studying quantum mechanics are often baffled with electron tunneling.Hence an easy approach for comprehension of the topic is presented here on the basis of uncertainty principle.An estimate of the tunneling time is also derived from the same method.
March 1, 2004
A simple model of a quantum clock is applied to the old and controversial problem of how long a particle takes to tunnel through a quantum barrier. The model I employ has the advantage of yielding sensible results for energy eigenstates, and does not require the use of time-dependant wave packets. Although the treatment does not forbid superluminal tunneling velocities, there is no implication of faster-than-light signaling because only the transit duration is measurable, not...
August 31, 2006
Addressed, mainly: postgraduates and related readers. Subject: Given two classical mechanical 1D-moving particles (material points), with identical initial data, one of those particles given free and another given to pass through a symmetrical force-barrier, a retardation effect is observed: After the barrier has been passed over, the second particle moves with the same velocity as the free particle, but spacially is retarded with respect to the latter. If the "non-free" part...
August 3, 2006
The phenomenon of quantum tunneling is reviewed and an overview of applying approximate methods for studying this effect is given. An approach to a time-dependent formalism is proposed in one dimension and generalized to higher dimensions. Some physical examples involving the resulting wavefunction which is determined are presented.
March 31, 2020
We study the quantum tunnel effect through a potential barrier employing a semiclassical formulation of quantum mechanics based on expectation values of configuration variables and quantum dispersions as dynamical variables. The evolution of the system is given in terms of a dynamical system for which we are able to determine effective trajectories for individual particles, in a total resemblance of the Bohmian description of quantum mechanics. We obtain a type of semiclassic...
March 11, 2023
The phenomenon of quantum tunneling remains a fascinating and enigmatic one, defying classical notions of particle behavior. This paper presents a novel theoretical investigation of the tunneling phenomenon, from the viewpoint of Hartman effect, showing that the classical concept of spatiality is transcended during tunneling, since one cannot describe the process as a crossing of the potential barrier. This means that quantum tunneling strongly indicates that quantum non-loca...
March 20, 2021
Quantum tunneling is considered from the point of view of local realism. It is concluded that a quantum object tunneling through a potential barrier cannot be interpreted as a point-like particle because such an interpretation generates a contradiction with the impossibility of faster-than-light motion. Such a contradiction does not arise if a quantum object is considered as a continuous medium formed by the fields of matter. The dynamics law of the mechanical motion of these...