February 20, 2018
We use continuous weak measurements of a driven superconducting qubit to experimentally study the information dynamics of a quantum Maxwell's demon. We show how information gained by a demon who can track single quantum trajectories of the qubit can be converted into work using quantum coherent feedback. We verify the validity of a quantum fluctuation theorem with feedback by utilizing information obtained along single trajectories. We demonstrate, in particular, that quantum...
March 13, 2018
Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluc...
May 3, 2018
This paper provides an overview of the first experimental realizations of quantum-mechanical Maxwell's demons based on superconducting circuits. The principal results of these experiments are recalled and put into context. We highlight the versatility offered by superconducting circuits for studying quantum thermodynamics.
January 7, 2019
We identify that quantum coherence is a valuable resource in the quantum heat engine, which is designed in a quantum thermodynamic cycle assisted by a quantum Maxwell's demon. This demon is in a superposed state. The quantum work and heat are redefined as the sum of coherent and incoherent parts in the energy representation. The total quantum work and the corresponding efficiency of the heat engine can be enhanced due to the coherence consumption of the demon. In addition, we...
October 1, 2015
We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's Demon where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the orig...
December 19, 2019
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwell's demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using...
July 5, 2019
We consider an autonomous implementation of Maxwell's demon in a quantum dot architecture. As in the original thought experiment, only the second law of thermodynamics is seemingly violated when disregarding the demon. The autonomous architecture allows us to compare descriptions in terms of information to a more traditional, thermoelectric characterization. Our detailed investigation of information-to-work conversion is based on fluctuation relations and second law like ineq...
July 29, 2014
We propose a physically realizable Maxwell's demon device using a spin valve interacting unitarily for a short time with electrons placed on a tape of quantum dots, which is thermodynamically equivalent to the device introduced by Mandal and Jarzynski [PNAS 109, 11641 (2012)]. The model is exactly solvable and we show that it can be equivalently interpreted as a Brownian ratchet demon. We then consider a measurement based discrete feedback scheme, which produces identical sys...
June 13, 2022
The interplay between thermal machines and quantum correlations is of great interest in both quantum thermodynamics and quantum information science. Recently, a quantum Szil\'ard engine has been proposed, showing that the quantum steerability between a Maxwell's demon and a work medium can be beneficial to a work extraction task. Nevertheless, this type of quantum-fueled machine is usually fragile in the presence of decoherence effects. We provide an example of the pure depha...
November 3, 2010
Quantum measurement of a system can change its mean energy, as well as entropy. A selective measurement (classical or quantum) can be used as a "Maxwell's demon" to power a single-temperature heat engine, by decreasing the entropy. Quantum mechanically, so can a non-selective measurement, despite increasing the entropy of a thermal state. The maximal amount of work extractable following the measurement is given by the change in free energy: $W_{max}^{(non-)sel.}=\Delta E_{mea...