May 21, 1998
Similar papers 2
June 10, 2005
The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. On the assumption that quantum mechanics is universal and complete, we discuss three ways in which classical physics has so far been believed to emerge fr...
October 2, 2000
We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we ...
February 3, 1994
Selection of the preferred classical set of states in the process of decoherence -- so important for cosmological considerations -- is discussed with an emphasis on the role of information loss and entropy. {\it Persistence of correlations} between the observables of two systems (for instance, a record and a state of a system evolved from the initial conditions described by that record) in the presence of the environment is used to define classical behavior. From the viewpoin...
February 20, 1998
The environment -- external or internal degrees of freedom coupled to the system -- can, in effect, monitor some of its observables. As a result, the eigenstates of these observables decohere and behave like classical states: Continuous destruction of superpositions leads to environment-induced superselection (einselection). Here I investigate it in the context of quantum chaos (i. e., quantum dynamics of systems which are classically chaotic).
April 14, 2003
The problem investigated in this paper is einselection, i. e. the selection of mutually exclusive quantum states with definite probabilities through decoherence. Its study is based on a theory of decoherence resulting from the projection method in the quantum theory of irreversible processes, which is general enough for giving reliable predictions. This approach leads to a definition (or redefinition) of the coupling with the environment involving only fluctuations. The range...
January 21, 2005
This is an informal introduction to the ideas of decoherence and emergent classicality, including a simple account of the decoherent histories approach to quantum theory. It is aimed at undergraduates with a basic appreciation of quantum theory. The emphasis is on simple physical ideas and pictures.
August 17, 2015
In quantum mechanics, pointer states are eigenstates of the observable of the measurement apparatus that represent the possible positions of the display pointer of the equipment. The origin of this concept lies in attempts to fill the blanks in the Everett's relative-state interpretation, and to make it a fully valid description of physical reality. To achieve this, it was necessary to consider not only the main system interacting with the measurement apparatus (like von Neum...
June 14, 1995
Introduction to the theory of decoherence. Contents: 1. The phenomenon of decoherence: superpositions, superselection rules, decoherence by "measurements". 2. Observables as a derivable concept. 3. The measurement problem. 4. Density matrix, coarse graining, and "events". 5. Conclusions.
August 2, 1999
In this contribution I give a brief introduction to the essential concepts and mechanisms of decoherence by the environment. The emphasis will be not so much on technical details but rather on conceptual issues and the impact on the interpretation problem of quantum theory.
November 22, 2018
In this article I aim to provide an intuitive and non-technical introduction to decoherence and quantum Darwinism. Together these theories explain how our classical reality emerges from an underlying quantum mechanical description. Here I focus on two aspects of this and explain, firstly, how decoherence can tell us why we never see macroscopic superpositions, such as dead-and-alive cats, in our classical surroundings; and secondly I describe and then provide a resolution to ...