August 25, 2011
We review recent experimental progress towards quantum information processing and quantum simulation using neutral atoms in two-dimensional (2D) arrays of optical microtraps as 2D registers of qubits. We describe a scalable quantum information architecture based on micro-fabricated optical elements, simultaneously targeting the important issues of single-site addressability and scalability. This approach provides flexible and integrable configurations for quantum state storag...
April 29, 2008
Ultra-cold atoms can be manipulated using microfabricated devices known as atom chips. These have significant potential for applications in sensing, metrology and quantum information processing. To date, the chips are loaded by transfer of atoms from an external, macroscopic magneto-optical trap (MOT) into microscopic traps on the chip. This transfer involves a series of steps, which complicate the experimental procedure and lead to atom losses. In this paper we present a des...
August 1, 2019
Trapped atomic ions are a proven and powerful tool for the fundamental research of quantum physics. They have emerged in recent years as one of the most promising candidates for several practical technologies including quantum computers, quantum simulators, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from established and nascent disciplines, are being deployed to create novel, reliable devices with a view to large scale integr...
February 3, 2004
We have generated multiple micron-sized optical dipole traps for neutral atoms using holographic techniques with a programmable liquid crystal spatial light modulator. The setup allows the storing of a single atom per trap, and the addressing and manipulation of individual trapping sites.
March 14, 2005
We discuss design considerations and the realization of a magnetic double-well potential on an atom chip using current-carrying wires. Stability requirements for the trapping potential lead to a typical size of order microns for such a device. We also present experiments using the device to manipulate cold, trapped atoms.
June 22, 2022
Trapping of single ultracold atoms is an important tool for applications ranging from quantum computation and communication to sensing. However, most experimental setups, while very precise and versatile, can only be operated in specialized laboratory environments due to their large size, complexity and high cost. Here, we introduce a new trapping concept for ultracold atoms in optical tweezers based on micrometer-scale lenses that are 3D printed onto the tip of standard opti...
August 21, 2013
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when applying a homogeneous magnetic bias field perpendicular to the fiber axis. We discuss this scheme in detail for laser-cooled cesium atoms and find trap depths and trap frequencies comparable to the two-color nanofiber-based trapping...
September 10, 1999
We show that the conductance of neutral atoms through a tightly confining waveguide constriction is quantized in units of lambda_dB^2/pi, where lambda_dB is the de Broglie wavelength of the incident atoms. Such a constriction forms the atom analogue of an electron quantum point contact and is an example of quantum transport of neutral atoms in an aperiodic system. We present a practical constriction geometry that can be realized using a microfabricated magnetic waveguide, and...
August 2, 2006
We describe a novel experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6 to 10 $\mu$m). In this range the dominant potential is the QED interaction (Casimir-Polder and Van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa type potentials with sub-mm range, arising from new physics related to gravity. The ...
June 22, 2020
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the...