September 30, 1998
Similar papers 2
October 28, 2020
A variational principle enabling one to compute individual Floquet states of a periodically time-dependent quantum system is formulated, and successfully tested against the benchmark system provided by the analytically solvable model of a linearly driven harmonic oscillator. The principle is particularly well suited for tracing individual Floquet states through parameter space, and may allow one to obtain Floquet states even for very high-dimensional systems which cannot be t...
February 12, 2004
The interrelationship between the non-Markovian stochastic Schr\"odinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite temp...
May 3, 2018
We develop a low-frequency perturbation theory in the extended Floquet Hilbert space of a periodically driven quantum systems, which puts the high- and low-frequency approximations to the Floquet theory on the same footing. It captures adiabatic perturbation theories recently discussed in the literature as well as diabatic deviation due to Floquet resonances. For illustration, we apply our Floquet perturbation theory to a driven two-level system as in the Schwinger-Rabi and t...
August 19, 2016
We investigate a long time asymptotic state of periodically driven open quantum systems analytically. The model we consider in this paper is a free fermionic system coupled to an energy and particle reservoir. We clarify some generic properties of the system which are independent of the details of the reservoir in the high frequency regime of the external driving. When the frequency of the external driving is much larger than the energy cutoff of the system-reservoir coupling...
April 12, 2023
We develop a Markovian master equation that models the evolution of systems subject to arbitrary driving and control fields. Our approach combines time rescaling and weak-coupling limits for the system-environment interaction with a secular approximation. The derivation makes use of the adiabatic time evolution operator in a manner that allows for the efficient description of strong driving, while recovering the adiabatic master equation in the appropriate limit. To illustrat...
April 14, 2014
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized h...
May 5, 2021
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermi's golden rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives, under which the Floquet Hamiltonian is significantly dress...
January 3, 2014
A key quantity characterizing a time-periodically forced quantum system coupled to a heat bath is the energy flowing in the steady state through the system into the bath, where it is dissipated. We derive a general expression which allows one to compute this energy dissipation rate for a heat bath consisting of a large number of harmonic oscillators, and work out two analytically solvable model examples. In particular, we distinguish between genuine transitions effectuating a...
September 11, 2003
The path integral approach offers not only an exact expression for the non- equilibrium dynamics of dissipative quantum systems, but is also a convenient starting point for perturbative treatments. An alternative way to explore the influence of friction in the quantum realm is based on master equations which require, however, in one or the other aspect approximations. Here it is discussed under which conditions and limitations Markovian master equations can be derived from ex...
June 25, 2018
The theoretical treatment of quasi-periodically driven quantum systems is complicated by the inapplicability of the Floquet theorem, which requires strict periodicity. In this work we consider a quantum system driven by a bi-harmonic driving and examine its asymptotic long-time limit, the limit in which features distinguishing systems with periodic and quasi-periodic driving occur. Also, in the classical case this limit is known to exhibit universal scaling, independent of th...