ID: 0711.2426

Circuits, Attractors and Reachability in Mixed-K Kauffman Networks

November 15, 2007

View on ArXiv

Similar papers 2

Robustness of Attractor States in Complex Networks with Scale-free Topology

August 20, 2007

84% Match
Shu-ichi Kinoshita, Kazumoto Iguchi, Hiroaki S. Yamada
Disordered Systems and Neura...

We study the intrinsic properties of attractors in the Boolean dynamics in complex network with scale-free topology, comparing with those of the so-called random Kauffman networks. We have numerically investigated the frozen and relevant nodes for each attractor, and the robustness of the attractors to the perturbation that flips the state of a single node of attractors in the relatively small network ($N=30 \sim 200$). It is shown that the rate of frozen nodes in the complex...

Find SimilarView on arXiv
T. M. A. Fink
Statistical Mechanics
Molecular Networks

The critical Kauffman model with connectivity one is the simplest class of critical Boolean networks. Nevertheless, it exhibits intricate behavior at the boundary of order and chaos. We introduce a formalism for expressing the dynamics of multiple loops as a product of the dynamics of individual loops. Using it, we prove that the number of attractors scales as $2^m$, where $m$ is the number of nodes in loops - as fast as possible, and much faster than previously believed.

The dynamics of critical Kauffman networks under asynchronous stochastic update

January 5, 2005

84% Match
Florian Greil, Barbara Drossel
Disordered Systems and Neura...
Statistical Mechanics

We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.

Find SimilarView on arXiv

Critical line in undirected Kauffman boolean networks - the role of percolation

December 6, 2007

83% Match
Piotr Fronczak, Agata Fronczak
Disordered Systems and Neura...
Statistical Mechanics

We show that to correctly describe the position of the critical line in the Kauffman random boolean networks one must take into account percolation phenomena underlying the process of damage spreading. For this reason, since the issue of percolation transition is much simpler in random undirected networks, than in the directed ones, we study the Kauffman model in undirected networks. We derive the mean field formula for the critical line in the giant component of these networ...

Find SimilarView on arXiv
F. C. Sheldon, T. M. A. Fink
Molecular Networks
Disordered Systems and Neura...
Probability

The Kauffman model of genetic computation highlights the importance of criticality at the border of order and chaos. But our understanding of its behavior is incomplete, and much of what we do know relies on heuristic arguments. To better understand the model and obtain more rigorous insights, we show that there are fundamental links between the critical Kauffman model and aspects of number theory. Using these connections, we prove that the number of attractors and the mean a...

Evolutionary Dynamics in Complex Networks of Competing Boolean Agents

November 26, 2004

83% Match
Baosheng Yuan, Bing-Hong Wang, Kan Chen
Other Condensed Matter

We investigate the dynamics of network minority games on Kauffman's NK networks (Kauffman nets), growing directed networks (GDNets), as well as growing directed networks with a small fraction of link reversals (GDRNets). We show that the dynamics and the associated phase structure of the game depend crucially on the structure of the underlying network. The dynamics on GDNets is very stable for all values of the connection number $K$, in contrast to the dynamics on Kauffman's ...

Find SimilarView on arXiv

The Role of Boolean Irreducibility in \textit{NK}-Kauffman Networks

April 11, 2014

83% Match
Federico Zertuche
Adaptation and Self-Organizi...
Cellular Automata and Lattic...

Boolean variables are such that they take only values on $ \mathbb{Z}_2 \cong \left\{0, 1 \right\} $. \textit{NK}-Kauffman networks are dynamical deterministic systems of $ N $ Boolean functions that depend only on $ K \leq N $ Boolean variables. They were proposed by Kauffman as a first step to understand cellular behaviour [Kauffman, S.A.; {\rm The Large Scale Structure and Dynamics of Gene Control Circuits: An Ensemble Approach}. {\it J. Theoret. Biol.} {\bf 44} (1974) 167...

Find SimilarView on arXiv

Scaling in a general class of critical random Boolean networks

June 23, 2006

83% Match
Tamara Mihaljev, Barbara Drossel
Disordered Systems and Neura...
Statistical Mechanics

We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical network with more than one input per node scal...

Find SimilarView on arXiv

Scaling in critical random Boolean networks

June 30, 2005

83% Match
Viktor Kaufman, Tamara Mihaljev, Barbara Drossel
Statistical Mechanics
Disordered Systems and Neura...

We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical Kauffman networks (with two inputs per node) in the thermodynamic limit. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes scales with the network size N as N^{2/3}, with only N^{1/3} nonfrozen nodes having two nonfrozen inputs. We also show the probability distributions for the numbers o...

Find SimilarView on arXiv

On the number of circuits in random graphs

March 24, 2006

83% Match
Enzo Marinari, Guilhem Semerjian
Statistical Mechanics
Disordered Systems and Neura...
Combinatorics
Probability

We apply in this article (non rigorous) statistical mechanics methods to the problem of counting long circuits in graphs. The outcomes of this approach have two complementary flavours. On the algorithmic side, we propose an approximate counting procedure, valid in principle for a large class of graphs. On a more theoretical side, we study the typical number of long circuits in random graph ensembles, reproducing rigorously known results and stating new conjectures.

Find SimilarView on arXiv