February 10, 2023
The critical Kauffman model with connectivity one is the simplest class of critical Boolean networks. Nevertheless, it exhibits intricate behavior at the boundary of order and chaos. We introduce a formalism for expressing the dynamics of multiple loops as a product of the dynamics of individual loops. Using it, we prove that the number of attractors scales as $2^m$, where $m$ is the number of nodes in loops - as fast as possible, and much faster than previously believed.
Similar papers 1
The Kauffman model describes a system of randomly connected nodes with dynamics based on Boolean update functions. Though it is a simple model, it exhibits very complex behavior for "critical" parameter values at the boundary between a frozen and a disordered phase, and is therefore used for studies of real network problems. We prove here that the mean number and mean length of attractors in critical random Boolean networks with connectivity one both increase faster than any ...
November 1, 2002
The Kauffman model describes a particularly simple class of random Boolean networks. Despite the simplicity of the model, it exhibits complex behavior and has been suggested as a model for real world network problems. We introduce a novel approach to analyzing attractors in random Boolean networks, and applying it to Kauffman networks we prove that the average number of attractors grows faster than any power law with system size.
We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.
The Kauffman model is the archetypal model of genetic computation. It highlights the importance of criticality, at which many biological systems seem poised. In a series of advances, researchers have honed in on how the number of attractors in the critical regime grows with network size. But a definitive answer has proved elusive. We prove that, for the critical Kauffman model with connectivity one, the number of attractors grows at least, and at most, as $(2/\!\sqrt{e})^N$. ...
The Kauffman model of genetic computation highlights the importance of criticality at the border of order and chaos. But our understanding of its behavior is incomplete, and much of what we do know relies on heuristic arguments. To better understand the model and obtain more rigorous insights, we show that there are fundamental links between the critical Kauffman model and aspects of number theory. Using these connections, we prove that the number of attractors and the mean a...
March 21, 2005
The evaluation of the number of attractors in Kauffman networks by Samuelsson and Troein is generalized to critical networks with one input per node and to networks with two inputs per node and different probability distributions for update functions. A connection is made between the terms occurring in the calculation and between the more graphic concepts of frozen, nonfrozen and relevant nodes, and relevant components. Based on this understanding, a phenomenological argument...
We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical network with more than one input per node scal...
June 30, 2005
We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical Kauffman networks (with two inputs per node) in the thermodynamic limit. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes scales with the network size N as N^{2/3}, with only N^{1/3} nonfrozen nodes having two nonfrozen inputs. We also show the probability distributions for the numbers o...
We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods ...
January 9, 2007
We investigate Threshold Random Boolean Networks with $K = 2$ inputs per node, which are equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According to the simplest consideration these networks should be critical but it turns out that they show a rich variety of behaviors, including periodic and chaotic oscillations. The results are supported by analytical calculations and computer simulations.