January 24, 2008
Similar papers 3
April 22, 2020
We present a practical method for evaluating the scattering amplitude $f_s(\theta,\phi)$ that arises in the context of the scattering of scalar, electromagnetic and gravitational planar waves by a rotating black hole. The partial-wave representation of $f_s$ is a divergent series, but $f_s$ itself diverges only at a single point on the sphere. Here we show that $f_s$ can be expressed as the product of a reduced series and a pre-factor that diverges only at this point. The coe...
January 13, 2019
We revisit the problem of scalar and electromagnetic waves impinging upon a Schwarzschild black hole from complex angular momentum techniques. We focus more particularly on the associated differential scattering cross sections. We derive an exact representation of the corresponding scattering amplitudes by replacing the discrete sum over integer values of the angular momentum which defines their partial wave expansions by a background integral in the complex angular momentum ...
September 25, 2014
Asymptotic analytic solutions of the Dirac equation, giving the scattering modes (of the continuous energy spectrum, $E>mc^2$) in Schwarzschild's chart and Cartesian gauge, are used for building the partial wave analysis of Dirac fermions scattered by black holes. The contribution of the bound states to absorption and possible resonant scattering is neglected because of some technical difficulties related to the discrete spectrum that is less studied so far. In this framework...
November 21, 2023
We study the scattering of axially incident massless scalar waves by a charged and rotating black hole solution from heterotic string theory called the Kerr-Sen black hole. We compute the scattering cross section using the partial wave approach, for arbitrary incident wavelengths. We compare our results with those of the general relativistic version of a charged and rotating black hole, namely the Kerr-Newman black hole. We present a selection of numerical results showing tha...
June 9, 2017
Gravitational waves can teach us not only about sources and the environment where they were generated, but also about the gravitational interaction itself. Here we study the features of gravitational radiation produced during the scattering of a point-like mass by a black hole. Our results are exact (to numerical error) at any order in a velocity expansion, and are compared against various approximations. At large impact parameter and relatively small velocities our results a...
December 15, 2022
We continue to investigate correspondences between, on the one hand, scattering amplitudes for massive higher-spin particles and gravitons in appropriate quantum-to-classical limits, and on the other hand, classical gravitational interactions of spinning black holes according to general relativity. We first construct an ansatz for a gravitational Compton amplitude, at tree level, constrained only by locality, crossing symmetry, unitarity and consistency with the linearized-Ke...
June 25, 2001
Accurate and powerful analytic and computational methods developped by the author allow to obtain the highly non trivial total absorption spectrum of the Black Hole, as well as phase shifts and cross sections (elastic and inelastic), the angular distribution of absorbed and scattered waves, and the Hawking emission rates. The exact total absorption spectrum of waves by the Black Hole presents as a function of frequency a remarkable oscillatory behaviour characteristic of a di...
December 2, 2021
Obtaining black hole solutions in alternative theories of gravity can be a difficult task due to cumbersome field equations that arise in many of such theories. In order to study the strong field regime in a model-free approach, one can consider deformed black hole solutions with additional parameters beyond mass, charge and angular momentum. We investigate the scattering and absorption of a massless scalar field by non-Schwarzschild black holes, considering the Johannsen and...
June 29, 2018
In this paper the scattering of fermions by a class of Bardeen black holes is investigated. After obtaining the scattering modes by solving the Dirac equation in this geometry, we use the partial wave method to derive an analytical expression for the phase shifts that enter into the definitions of partial amplitudes that define the scattering cross sections and the induced polarization. It is then showed that, like in the case of Schwarzschild and Reissner-Nordstr\"om, the ph...
December 12, 2003
The absorption cross section for scalar particle impact on a Schwarzschild black hole is found. The process is dominated by two physical phenomena. One of them is the well-known greybody factor that arises from the energy-dependent potential barrier outside the horizon that filters the incoming and outgoing waves. The other is related to the reflection of particles on the horizon (Kuchiev 2003). This latter effect strongly diminishes the cross section for low energies, forcin...